• Iasson KarafyllisEmail author
  • Zhong-Ping Jiang
Part of the Communications and Control Engineering book series (CCE)


Chapter 7 aims to demonstrate the wide applicability of the analysis and synthesis tools presented in previous chapters. Three representative control problems are studied: (1) the stabilization of a delayed chemostat model; (2) the stabilization of numerical schemes for the numerical solution of systems described by ODEs; (3) the stabilization of the price of a commodity by manipulation of buffer stocks.


Stabilization Policy Buffer Stock Chemostat Model Tracking Control Problem Mathematical Control Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antonelli, R., Astolfi, A.: Nonlinear controller design for robust stabilization of continuous biological systems. In: Proceedings of the IEEE Conference on Control Applications, Anchorage, AL, September (2000) Google Scholar
  2. 2.
    Athanasiou, G., Karafyllis, I., Kotsios, S.: Price stabilization using buffer stocks. Journal of Economic Dynamics and Control 32(4), 1212–1235 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    De Leenheer, P., Smith, H.L.: Feedback control for chemostat models. Journal of Mathematical Biology 46, 48–70 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Enciso, G.A., Sontag, E.D.: Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete and Continuous Dynamical Systems 16, 133–155 (2006) MathSciNetGoogle Scholar
  5. 5.
    Gouzé, J.-L., Robledo, G.: Robust control for an uncertain chemostat model. International Journal of Robust and Nonlinear Control 16, 133–155 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Grüne, L.: Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization. Springer, Berlin (2002) zbMATHCrossRefGoogle Scholar
  7. 7.
    Grüne, L.: Attraction rates, robustness and discretization of attractors. SIAM Journal on Numerical Analysis 41, 2096–2113 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gustafsson, K.: Control theoretic techniques for stepsize selection in explicit Runge–Kutta methods. ACM Transactions on Mathematical Software 17, 533–554 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gustafsson, K.: Control-theoretic techniques for stepsize selection in implicit Runge–Kutta methods. ACM Transactions on Mathematical Software 20, 496–517 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gustafsson, K., Lundh, M., Soderlind, G.: A PI stepsize control for the numerical solution of ordinary differential equations. BIT 28, 270–287 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin/Heidelberg (2002) Google Scholar
  12. 12.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I Nonstiff Problems, 2nd edn. Springer, Berlin/Heidelberg (1993) zbMATHGoogle Scholar
  13. 13.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002) zbMATHGoogle Scholar
  14. 14.
    Harmard, J., Rapaport, A., Mazenc, F.: Output tracking of continuous bioreactors through recirculation and by-pass. Automatica 42, 1025–1032 (2006) CrossRefGoogle Scholar
  15. 15.
    Karafyllis, I.: Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis. IMA Journal of Mathematical Control and Information 23(1), 11–41 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Karafyllis, I.: A system-theoretic framework for a wide class of systems I: Applications to numerical analysis. Journal of Mathematical Analysis and Applications 328, 876–899 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Karafyllis, I., Kravaris, C.: Robust global stabilizability by means of sampled-data control with positive sampling rate. International Journal of Control 82, 755–772 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Karafyllis, I., Grüne, L.: Feedback stabilization methods for the numerical solution of systems of ordinary differential equations. To appear in Discrete and Continuous Dynamical Systems: Series B Google Scholar
  19. 19.
    Karafyllis, I., Jiang, Z.-P.: New results in trajectory-based small-gain with application to the stabilization of a chemostat. Submitted to the International Journal of Robust and Nonlinear Control Google Scholar
  20. 20.
    Karafyllis, I., Kravaris, C., Syrou, L., Lyberatos, G.: A vector Lyapunov function characterization of input-to-state stability with application to robust global stabilization of the chemostat. European Journal of Control 14, 47–61 (2008) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Karafyllis, I., Kravaris, C., Kalogerakis, N.: Relaxed Lyapunov criteria for robust global stabilization of nonlinear systems. International Journal of Control 82, 2077–2094 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kloeden, P.E., Lorenz, J.: Stable attracting sets in dynamical systems and their one-step discretizations. SIAM Journal on Numerical Analysis 23, 986–995 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations Numerical Methods and Applications, 2nd edn. Marcel Dekker, New York (2002) zbMATHCrossRefGoogle Scholar
  24. 24.
    Lamba, H.: Dynamical systems and adaptive timestepping in ODE solvers. BIT Numerical Mathematics (NY) 40, 314–335 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mailleret, L., Bernard, O.: A simple robust controller to stabilize an anaerobic digestion process. In: Proceedings of the 8th Conference on Computer Applications in Biotechnology, pp. 213–218 (2001) Google Scholar
  26. 26.
    Mazenc, F., Jiang, Z.P.: Persistence and time-varying nonlinear controllers for a chemostat with many species. Dynamics of Continuous, Discrete and Impulsive Systems, Series A 17, 737–763 (2010) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mazenc, F., Jiang, Z.P.: Global output feedback stabilization of a chemostat with an arbitrary number of species. IEEE Transactions on Automatic Control 55, 2570–2575 (2010) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mazenc, F., Malisof, M., Harmand, J.: Stabilization and robustness analysis for a chemostat model with two species and Monod growth rates via a Lyapunov approach. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans (2007) Google Scholar
  29. 29.
    Mazenc, F., Malisoff, M., Harmand, J.: Further results on stabilization of periodic trajectories for a chemostat with two species. IEEE Transactions on Automatic Control 53, 66–74 (2008) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Smith, H., Waltman, P.: The Theory of the Chemostat. Dynamics of Microbial Competition. Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995) zbMATHCrossRefGoogle Scholar
  31. 31.
    Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  32. 32.
    Wang, L., Wolkowicz, G.: A delayed chemostat model with general nonmonotone response functions and differential removal rates. Journal of Mathematical Analysis and Applications 321, 452–468 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Wolkowicz, G., Xia, H.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM Journal on Applied Mathematics 57, 1019–1043 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Zhu, L., Huang, X.: Multiple limit cycles in a continuous culture vessel with variable yield. Nonlinear Analysis 64, 887–894 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Zhu, L., Huang, X., Su, H.: Bifurcation for a functional yield chemostat when one competitor produces a toxin. Journal of Mathematical Analysis and Applications 329, 891–903 (2007) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

There are no affiliations available

Personalised recommendations