External Stability: Notions and Characterizations

  • Iasson KarafyllisEmail author
  • Zhong-Ping Jiang
Part of the Communications and Control Engineering book series (CCE)


Chapter 4 is devoted to the analysis of external global stability notions used in mathematical control and system theories. The presented stability notions are developed in the system-theoretic framework described in Chap.  1 so that one can obtain a wide perspective of the role of stability in various important classes of deterministic systems. The results in this chapter are of crucial importance from a practical point of view since almost all engineering and natural system are subject to external disturbance inputs, which may take differing forms as reference signals, actuator and sensor disturbances.


  1. 1.
    Angeli, D., Sontag, E.D.: Forward completeness, unbounded observability and their Lyapunov characterizations. Systems and Control Letters 38, 209–217 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Angeli, D., Sontag, E.D., Wang, Y.: A characterization of integral input-to-state stability. IEEE Transactions on Automatic Control 45, 1082–1097 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Grüne, L.: Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Transactions on Automatic Control 47, 1499–1504 (2002) CrossRefGoogle Scholar
  4. 4.
    Grüne, L.: Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization. Springer, Berlin (2002) zbMATHCrossRefGoogle Scholar
  5. 5.
    Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993) zbMATHGoogle Scholar
  6. 6.
    Ingalls, B., Wang, Y.: On input-to-output stability for systems not uniformly bounded. In: Proceedings of NOLCOS (2001) Google Scholar
  7. 7.
    Jiang, Z.P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 857–869 (2001) zbMATHCrossRefGoogle Scholar
  8. 8.
    Jiang, Z.P., Teel, A., Praly, L.: Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems 7, 95–120 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jiang, Z.P., Lin, Y., Wang, Y.: Nonlinear small-gain theorems for discrete-time feedback systems and applications. Automatica 40, 2129–2136 (2004) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Karafyllis, I.: The non-uniform in time small-gain theorem for a wide class of control systems with outputs. European Journal of Control 10, 307–323 (2004) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Karafyllis, I.: Non-uniform in time robust global asymptotic output stability for discrete-time systems. International Journal of Robust and Nonlinear Control 16, 191–214 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Karafyllis, I.: Non-uniform in time robust global asymptotic output stability. Systems and Control Letters 54, 181–193 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Karafyllis, I.: A system-theoretic framework for a wide class of systems II: Input-to-output stability. Journal of Mathematical Analysis and Applications 328, 466–486 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Karafyllis, I., Jiang, Z.-P.: A small-gain theorem for a wide class of feedback systems with control applications. SIAM Journal Control and Optimization 46, 1483–1517 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Karafyllis, I., Tsinias, J.: Non-uniform in time ISS and the small-gain theorem. IEEE Transactions on Automatic Control 49, 196–216 (2004) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Karafyllis, I., Pepe, P., Jiang, Z.-P.: Input-to-output stability for systems described by retarded functional differential equations. European Journal of Control 14, 539–555 (2008) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, New York (1996) Google Scholar
  18. 18.
    Lin, Y., Sontag, E.D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization 34, 124–160 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lin, Y., Wang, Y., Cheng, D.: On non-uniform and semi-uniform input-to-state stability for time-varying systems. In: Proceedings of the 16th IFAC World Congress, Prague (2005) Google Scholar
  20. 20.
    Pepe, P., Jiang, Z.-P.: A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Systems and Control Letters 55, 1006–1014 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Praly, L., Wang, Y.: Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability. Mathematics of Control, Signals and Systems 9, 1–33 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control 34, 435–443 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Sontag, E.D.: Comments on integral variants of ISS. Systems and Control Letters 34, 93–100 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Sontag, E.D.: Input-to-state stability: Basic concepts and results. In: Nistri, P., Stefani, G. (eds.) Nonlinear and Optimal Control Theory, Italy, June 19–29, 2004. Lecture Notes in Mathematics, vol. 1932, pp. 163–220. Springer, Berlin (2008). Lectures Given at the C.I.M.E. Summer School Held in Cetraro CrossRefGoogle Scholar
  25. 25.
    Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability property. Systems and Control Letters 24, 351–359 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Sontag, E.D., Wang, Y.: New characterizations of the input-to-state stability. IEEE Transactions on Automatic Control 41, 1283–1294 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Sontag, E.D., Wang, Y.: Notions of input to output stability. Systems and Control Letters 38, 235–248 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Sontag, E.D., Wang, Y.: Lyapunov characterizations of input-to-output stability. SIAM Journal on Control and Optimization 39, 226–249 (2001) CrossRefGoogle Scholar
  29. 29.
    Teel, A.R.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Transactions on Automatic Control 43(7), 960–964 (1998) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

There are no affiliations available

Personalised recommendations