Skip to main content

Stability and Suboptimality Using Stabilizing Constraints

  • Chapter
Nonlinear Model Predictive Control

Part of the book series: Communications and Control Engineering ((CCE))

  • 6480 Accesses

Abstract

In this chapter we present a comprehensive stability and suboptimality analysis for NMPC schemes with stabilizing terminal constraints. Both endpoint constraints as well as regional constraints plus Lyapunov function terminal cost are covered. We show that viability of the state constraint set can be replaced by viability of the terminal constraint set in order to ensure feasibility of the NMPC optimal control problem along the closed loop trajectories. The “reversing of monotonicity” of the finite time optimal value functions is proved and used in order to apply the relaxed dynamic programming framework introduced in the previous chapter. Using this framework, stability, suboptimality (i.e., estimates about the infinite horizon performance of the NMPC closed loop system) and inverse optimality results are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C.C., Shaw, L.: On receding horizon feedback control. Automatica18(3), 349–352 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica J. IFAC34(10), 1205–1217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing nonlinear receding horizon control via a nonquadratic terminal state penalty. In: CESA’96 IMACS Multiconference: Computational Engineering in Systems Applications, Lille, France, pp. 185–187 (1996)

    Google Scholar 

  4. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans. Automat. Control43(7), 1030–1036 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model predictive controllers. Systems Control Lett.42(2), 127–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Automat. Control53, 2100–2111 (2008)

    Article  MathSciNet  Google Scholar 

  7. Hu, B., Linnemann, A.: Toward infinite-horizon optimality in nonlinear model predictive control. IEEE Trans. Automat. Control47(4), 679–682 (2002)

    Article  MathSciNet  Google Scholar 

  8. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl.57(2), 265–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding-horizon control via inverse optimality. Systems Control Lett.32(4), 241–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control35(7), 814–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automat. Control38(11), 1623–1633 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nešić, D., Grüne, L.: A receding horizon control approach to sampled-data implementation of continuous-time controllers. Systems Control Lett.55, 660–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica31(10), 1443–1451 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Poubelle, M.A., Bitmead, R.R., Gevers, M.R.: Fake algebraic Riccati techniques and stability. IEEE Trans. Automat. Control33(4), 379–381 (1988)

    Article  MATH  Google Scholar 

  16. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)

    Google Scholar 

  17. Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB. Advances in Industrial Control. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Grüne .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grüne, L., Pannek, J. (2011). Stability and Suboptimality Using Stabilizing Constraints. In: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-501-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-501-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-500-2

  • Online ISBN: 978-0-85729-501-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics