Skip to main content

Essential Instruments in Laparoscopic and Robotic Surgery

  • Chapter
  • First Online:

Abstract

Urologic surgery has evolved to include minimally invasive and robot-assisted techniques with excellent outcomes. These techniques have been expanded to include surgery of the retroperitoneum. Currently, minimally invasive retroperitoneal surgery has been described for surgery on the adrenal, kidney, ureter, and lymph nodes. A strong working knowledge of the essential instruments in laparoscopic and robotic surgery is crucial for successful implementation and maintenance of a minimally invasive surgical practice. This chapter will review the essential equipment for laparoscopic and robot-assisted surgery with the da Vinci® Surgical System.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davies BL, Hibberd RD, Coptcoat MJ, et al. A surgeon robot prostatectomy – a laboratory evaluation. J Med Eng Technol. 1989;13:273.

    Article  CAS  PubMed  Google Scholar 

  2. Davies BL, Hibberd RD, Ng WS, et al. The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng H. 1991;205:35.

    Article  CAS  PubMed  Google Scholar 

  3. Dasgupta P, Rose K, Challacombe B. Equipment and technology in robotics. In: Smith JA, Tewari A, eds. Robotics in Urologic Surgery. Philadelphia: Saunders Elsevier; 2008:3-9.

    Chapter  Google Scholar 

  4. Rovetta A, Sala R. Execution of robot-assisted biopsies within the clinical context. J Image Guid Surg. 1995;1:280.

    Article  CAS  PubMed  Google Scholar 

  5. Challacombe BJ, Khan MS, Murphy D, et al. The history of robotics in urology. World J Urol. 2006;24:120.

    Article  PubMed  Google Scholar 

  6. Canes D, Desai MM, Aron M, et al. Transumbilical single-port surgery: evolution and current status. Eur Urol. 2008;54:1020.

    Article  PubMed  Google Scholar 

  7. White WM, Goel RK, Kaouk JH. Single-port laparoscopic retroperitoneal surgery: initial operative experience and comparative outcomes. Urology. 2009;73:1279.

    Article  PubMed  Google Scholar 

  8. Aron M, Desai MM, Rubinstein M, Gill IS. Laparoscopic instrumentation. In: de la Rosette J, Gill I, eds. Laparoscopic Urologic Surgery in Malignancies. New York: Springer; 2005:271-285.

    Chapter  Google Scholar 

  9. Gettman MT. Complications of laparoscopic access. In: Ramakumar S, Jarrett T, eds. Complications of Urologic Laparoscopic Surgery. New York: Informa Healthcare; 2005:13-31.

    Chapter  Google Scholar 

  10. Hasson HM. A modified instrument and method for laparoscopy. Am J Obstet Gynecol. 1971;110:886.

    CAS  PubMed  Google Scholar 

  11. Hasson HM, Rotman C, Rana N, et al. Open laparoscopy: 29-year experience. Obstet Gynecol. 2000;96:763.

    Article  CAS  PubMed  Google Scholar 

  12. Aron M, Chung B, Gill IS. Basics of retroperitoneal laparoscopy. In: Gill IS, ed. Textbook of Laparoscopic Urology. New York/London: Informa; 2006:119-128.

    Chapter  Google Scholar 

  13. Gaur DD. Laparoscopic operative retroperitoneoscopy: use of a new device. J Urol. 1992;148:1137.

    CAS  PubMed  Google Scholar 

  14. Schulam PG, Hedican SP, Docimo SG. Radially dilating trocar system for open laparoscopic access. Urology. 1999;54:727.

    Article  CAS  PubMed  Google Scholar 

  15. Shekarriz B, Gholami SS, Rudnick DM, et al. Radially expanding laparoscopic access for renal/adrenal surgery. Urology. 2001;58:683.

    Article  CAS  PubMed  Google Scholar 

  16. Ternamian AM. A trocarless, reusable, visual-access cannula for safer laparoscopy: an update. J Am Assoc Gynecol Laparosc. 1998;5:197.

    Article  CAS  PubMed  Google Scholar 

  17. Ternamian AM. Laparoscopy without trocars. Surg Endosc. 1997;11:815.

    Article  CAS  PubMed  Google Scholar 

  18. Marcovich R, Del Terzo MA, Wolf JS Jr. Comparison of transperitoneal laparoscopic access techniques: optiview visualizing trocar and Veress needle. J Endourol. 2000;14:175.

    Article  CAS  PubMed  Google Scholar 

  19. String A, Berber E, Foroutani A, et al. Use of the optical access trocar for safe and rapid entry in various laparoscopic procedures. Surg Endosc. 2001;15:570.

    Article  CAS  PubMed  Google Scholar 

  20. Soulie M, Seguin P, Richeux L, et al. Urological complications of laparoscopic surgery: experience with 350 procedures at a single center. J Urol. 2001;165:1960.

    Article  CAS  PubMed  Google Scholar 

  21. Shaher Z. Port closure techniques. Surg Endosc. 2007;21:1264.

    Article  CAS  PubMed  Google Scholar 

  22. Klingler CH, Remzi M, Marberger M, et al. Haemostasis in laparoscopy. Eur Urol. 2006;50:948.

    Article  PubMed  Google Scholar 

  23. Msezane LP, Katz MH, Gofrit ON, et al. Hemostatic agents and instruments in laparoscopic renal surgery. J Endourol. 2008;22:403.

    Article  PubMed  Google Scholar 

  24. Lowry PS, Nakada SY. Laparoscopic instrumentation. In: Nakada SY, ed. Essential Urologic Laparoscopy. Totowa: Humana Press; 2003:9-22.

    Google Scholar 

  25. Lee J, Gianduzzo TR. Advances in laser technology in urology. Urol Clin North Am. 2009;36:189.

    Article  PubMed  Google Scholar 

  26. Lotan Y, Gettman MT, Lindberg G, et al. Laparoscopic partial nephrectomy using holmium laser in a porcine model. JSLS. 2004;8:51.

    PubMed Central  PubMed  Google Scholar 

  27. Lotan Y, Gettman MT, Ogan K, et al. Clinical use of the holmium: YAG laser in laparoscopic partial nephrectomy. J Endourol. 2002;16:289.

    Article  PubMed  Google Scholar 

  28. Ogan K, Jacomides L, Saboorian H, et al. Sutureless laparoscopic heminephrectomy using laser tissue soldering. J Endourol. 2003;17:295.

    Article  PubMed  Google Scholar 

  29. Moinzadeh A, Gill IS, Rubenstein M, et al. Potassium-titanyl-phosphate laser laparoscopic partial nephrectomy without hilar clamping in the survival calf model. J Urol. 2005;174:1110.

    Article  PubMed  Google Scholar 

  30. Bui MH, Breda A, Gui D, et al. Less smoke and minimal tissue carbonization using a thulium laser for laparoscopic partial nephrectomy without hilar clamping in a porcine model. J Endourol. 2007;21:1107.

    Article  PubMed  Google Scholar 

  31. Gianduzzo T, Colombo JR Jr, Haber GP, et al. Laser robotically assisted nerve-sparing radical prostatectomy: a pilot study of technical feasibility in the canine model. BJU Int. 2008;102:598.

    Article  PubMed  Google Scholar 

  32. Giorgi LJ Jr, Moran ME. Laparoscopic suturing techniques: general consideration. In: Gill IS, ed. Textbook of Laparoscopic Urology. New York/London: Informa Health; 2006:129-182.

    Chapter  Google Scholar 

  33. Adams JB, Schulam PG, Moore RG, et al. New laparoscopic suturing device: initial clinical experience. Urology. 1995;46:242.

    Article  CAS  PubMed  Google Scholar 

  34. Leighton TA, Liu SY, Bongard FS. Comparative cardiopulmonary effects of carbon dioxide versus helium pneumoperitoneum. Surgery. 1993;113:527.

    CAS  PubMed  Google Scholar 

  35. Ott DE. Laparoscopic hypothermia. J Laparoendosc Surg. 1991;1:127.

    Article  CAS  PubMed  Google Scholar 

  36. Margulis V, Matsumoto ED, Tunc L, et al. Effect of warmed, humidified insufflation gas and anti-inflammatory agents on cytokine response to laparoscopic nephrectomy: porcine model. J Urol. 2005;174:1452.

    Article  PubMed  Google Scholar 

  37. Haber GP, Crouzet S, Kamoi K, et al. Robotic NOTES (Natural Orifice Translumenal Endoscopic Surgery) in reconstructive urology: initial laboratory experience. Urology. 2008;71:996.

    Article  PubMed  Google Scholar 

  38. Bhandari A, Hemal A, Menon M. Instrumentation, sterilization, and preparation of robot. Indian J Urol. 2005;21:83.

    Article  Google Scholar 

  39. Narula VK, Melvin SM. Robotic surgical systems. In: Patel VR, ed. Robotic Urologic Surgery. London: Springer; 2007:5-14.

    Chapter  Google Scholar 

  40. Gettman MT, Blute ML, Peschel R, et al. Current status of robotics in urologic laparoscopy. Eur Urol. 2003;43:106.

    Article  PubMed  Google Scholar 

  41. Su LM, Smith JA Jr. Laparoscopic and robot-assisted laparoscopic radical prostatectomy and pelvic lymphadenectomy. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, eds. Campbell-Walsh Urology, vol. 3. 9th ed. Philadelphia: Saunders Elsevier; 2007:2985-3005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ty T. Higuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Higuchi, T.T., Gettman, M.T. (2011). Essential Instruments in Laparoscopic and Robotic Surgery. In: Joseph, J., Patel, H. (eds) Retroperitoneal Robotic and Laparoscopic Surgery. Springer, London. https://doi.org/10.1007/978-0-85729-485-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-485-2_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-484-5

  • Online ISBN: 978-0-85729-485-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics