Skip to main content

Surgical Management of Glial Cancers

  • Chapter
  • First Online:
  • 1150 Accesses

Abstract

The value of surgery for low- and high-grade gliomas alike has long been debated due to the lack of randomized controlled data. Recent studies are providing more and more insight into different benefits derived from surgery and in particular the value extensive cytoreduction in both low- and high-grade gliomas, even in the elderly with malignant gliomas. However, there is ample evidence indicating that prevention of neurological deficits is paramount to radicality.

A plethora of intraoperative methods are available to maximize radicality while minimizing the risks for neurological deficits. These methods should be used judiciously and as a complement to immaculate surgical technique and an intimate familiarity with neuroanatomy.

Nevertheless, not many general recommendations can be made regarding resectability of individual tumors, since the decision of how far to reduce tumor burden depends on many factors, including surgical experience, availability of surgical adjuncts, and patient preference. If extensive cytoreduction is the aim of surgery, technical adjuncts should be used as much as possible, even in high-grade gliomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCarter MD, Fong Y. Role for surgical cytoreduction in multimodality treatments for cancer. Ann Surg Oncol. 2001;8:38–43.

    Article  PubMed  CAS  Google Scholar 

  2. Sills Jr AK, Duntsch C, Weimar J. Therapeutic strategies for local recurrent malignant glioma. Curr Treat Options Oncol. 2004;5:491–7.

    Article  PubMed  Google Scholar 

  3. Quigley MR, Maroon JC. The relationship between survival and the extent of the resection in patients with supratentorial malignant gliomas. Neurosurgery. 1991;29:385–8.

    Article  PubMed  CAS  Google Scholar 

  4. Curran Jr WJ, Scott CB, Horton J. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993;85:704–10.

    Article  PubMed  Google Scholar 

  5. Kreth FW, Warnke PC, Scheremet R, et al. Surgical resection and radiation therapy versus biopsy and radiation therapy in the treatment of glioblastoma multiforme. J Neurosurg. 1993;78:762–6.

    Article  PubMed  CAS  Google Scholar 

  6. Whittle IR. Surgery for gliomas. Curr Opin Neurol. 2002;15:663–9.

    Article  PubMed  Google Scholar 

  7. Ashby LS, Ryken TC. Management of malignant glioma: steady progress with multimodal approaches. Neurosurg Focus. 2006;20:E3.

    Article  PubMed  Google Scholar 

  8. Kowalczuk A, Macdonald RL, Amidei C, et al. Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery. 1997;41:1028–36.

    Article  PubMed  CAS  Google Scholar 

  9. Vuorinen V, Hinkka S, Farkkila M, et al. Debulking or biopsy of malignant glioma in elderly people—a randomised study. Acta Neurochir (Wien). 2003;145:5–10.

    Article  CAS  Google Scholar 

  10. Tönnis W, Walter W. Das Glioblastoma multiforme. (Bericht über 2611 Fälle). Das Glioblastoma Multiforme: Pathologie Klinik, Diagnostik und Therapie. Acta Neurochirurgica Suppl VI. Wien: Springer; 1959. p. 40–-62.

    Google Scholar 

  11. Ciric I, Vick NA, Mikhael MA, et al. Aggressive surgery for malignant supratentorial gliomas. Clin Neurosurg. 1990;36:375–83.

    PubMed  CAS  Google Scholar 

  12. Berger MS, Deliganis AV, Dobbins J, et al. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer. 1994;74:1784–91.

    Article  PubMed  CAS  Google Scholar 

  13. Devaux BC, O’Fallon JR, Kelly PJ. Resection, biopsy, and survival in malignant glial neoplasms. A retrospective study of clinical parameters, therapy, and outcome. J Neurosurg. 1993;78:767–75.

    Article  PubMed  CAS  Google Scholar 

  14. Winger MJ, Macdonald DR, Cairncross JG. Supratentorial anaplastic gliomas in adults. The prognostic importance of extent of resection and prior low-grade glioma. J Neurosurg. 1989;71:487–93.

    Article  PubMed  CAS  Google Scholar 

  15. Laws ER, Parney IF, Huang W, Glioma Outcomes Investigators. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg. 2003;99:467–73.

    Article  PubMed  Google Scholar 

  16. Lacroix M, Abi-Said D, Fourney DR, et al. A ­multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.

    PubMed  CAS  Google Scholar 

  17. Keles GE, Chang EF, Lamborn KR, et al. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg. 2006;105:34–40.

    Article  PubMed  Google Scholar 

  18. Keles GE, Anderson B, Berger MS. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol. 1999;52:371–9.

    Article  PubMed  CAS  Google Scholar 

  19. Simpson JR, Horton J, Scott C, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys. 1993;26:239–44.

    Article  PubMed  CAS  Google Scholar 

  20. McGirt MJ, Chaichana KL, Gathinji M, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110:156–62.

    Article  PubMed  Google Scholar 

  21. Hess KR. Extent of resection as a prognostic variable in the treatment of gliomas. J Neurooncol. 1999;42:227–31.

    Article  PubMed  CAS  Google Scholar 

  22. Albert FK, Forsting M, Sartor K, et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34:45–60.

    Article  PubMed  CAS  Google Scholar 

  23. Stummer W, Pichlmeier U, Meinel T, ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.

    Article  PubMed  CAS  Google Scholar 

  24. Law M, Hamburger M, Johnson G, et al. Differentiating surgical from non-surgical lesions using perfusion MR imaging and proton MR spectroscopic imaging. Technol Cancer Res Treat. 2004;3:557–65.

    PubMed  Google Scholar 

  25. Omuro AM, Leite CC, Mokhtari K, Delattre JY. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 2006;5:937–48.

    Article  PubMed  Google Scholar 

  26. Barker 2nd FG, Chang SM, Huhn SL, et al. Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer. 1997;80:936–41.

    Article  PubMed  Google Scholar 

  27. Smits A, Baumert BG. The clinical value of PET with amino acid tracers for gliomas WHO grade II. Int J Mol Imaging. 2011;2011:372509.

    PubMed  Google Scholar 

  28. Ewelt C, Floeth FW, Felsberg J, et al. Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg. 2011;113:541–7.

    Article  PubMed  Google Scholar 

  29. Glantz MJ, Burger PC, Herndon 2nd JE, et al. Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas. Neurology. 1991;41:1741–4.

    Article  PubMed  CAS  Google Scholar 

  30. Woodworth G, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD. Accuracy of frameless and frame-based image-guided stereotactic brain biopsy in the diagnosis of glioma: comparison of biopsy and open resection specimen. Neurol Res. 2005;27:358–62.

    Article  PubMed  Google Scholar 

  31. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol. 2001;3:193–200.

    PubMed  CAS  Google Scholar 

  32. Muragaki Y, Chernov M, Maruyama T, et al. Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate? Minim Invasive Neurosurg. 2008;51:275–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ciric I, Ammirati M, Vick N, Mikhael M. Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection. Neurosurgery. 1987;21:21–6.

    Article  PubMed  CAS  Google Scholar 

  34. Sawaya R, Hammoud M, Schoppa D, et al. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery. 1998;42:1044–55.

    Article  PubMed  CAS  Google Scholar 

  35. Stummer W, Tonn JC, Mehdorn HM, ALA-Glioma Study Group. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J Neurosurg. 2011;114:613–23.

    Article  PubMed  Google Scholar 

  36. Fadul C, Wood J, Thaler H, et al. Morbidity and mortality of craniotomy for excision of supratentorial gliomas. Neurology. 1988;38:1374–9.

    Article  PubMed  CAS  Google Scholar 

  37. Collingridge DR, Piepmeier JM, Rockwell S, Knisely JP. Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol. 1999;53:127–31.

    Article  PubMed  CAS  Google Scholar 

  38. Evans SM, Judy KD, Dunphy I, Jenkins WT, et al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res. 2004;10:8177–84.

    Article  PubMed  CAS  Google Scholar 

  39. Knisely JP, Rockwell S. Importance of hypoxia in the biology and treatment of brain tumors. Neuroimaging Clin N Am. 2002;12:525–36.

    Article  PubMed  Google Scholar 

  40. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL. Expression of hypoxia-inducible factor 1 alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 2000;88:2606–18.

    Article  PubMed  CAS  Google Scholar 

  41. Koritzinsky M, Seigneuric R, Magagnin MG, et al. The hypoxic proteome is influenced by gene-specific changes in mRNA translation. Radiother Oncol. 2005;76:177–86.

    Article  PubMed  CAS  Google Scholar 

  42. Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ, Riggins GJ. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst. 2001;93:1337–43.

    Article  PubMed  CAS  Google Scholar 

  43. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21:1624–36.

    Article  PubMed  CAS  Google Scholar 

  44. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994–8.

    Article  PubMed  CAS  Google Scholar 

  45. Navalitloha Y, Schwartz ES, Groothuis EN. Therapeutic implications of tumor interstitial fluid pressure in subcutaneous RG-2 tumors. Neuro Oncol. 2006;8:227–33.

    Article  PubMed  Google Scholar 

  46. Gottfried ON, Deogaonkar M, Way DL. Postoperative cerebral edema after intracavitary implantation of Gliadel(R) wafers for treatment of malignant gliomas [abstract]. J Invest Med. 2000;48(1):79A.

    Google Scholar 

  47. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41:403–19.

    Article  PubMed  CAS  Google Scholar 

  48. Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58:672–84.

    PubMed  CAS  Google Scholar 

  49. Stummer W, van den Bent MJ, Westphal M. Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien). 2011;153:1211–8.

    Article  Google Scholar 

  50. Stupp R, Mason WP, van den Bent MJ, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant ­temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  PubMed  CAS  Google Scholar 

  51. Westphal M, Ram Z, Riddle V, Hilt D, Bortey E, Executive Committee of the Gliadel Study Group. Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien). 2006;148:269–75.

    Article  CAS  Google Scholar 

  52. Stupp R, Hegi ME, Mason WP, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  PubMed  CAS  Google Scholar 

  53. Rosati A, Tomassini A, Pollo B, et al. Epilepsy in cerebral glioma: timing of appearance and histological correlations. J Neurooncol. 2009;93:395–400.

    Article  PubMed  Google Scholar 

  54. Chang EF, Potts MB, Keles GE, et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg. 2008;108:227–35.

    Article  PubMed  Google Scholar 

  55. Chaichana KL, Parker SL, Olivi A, Quiñones-Hinojosa A. Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. J Neurosurg. 2009;111:282–92.

    Article  PubMed  Google Scholar 

  56. Kurzwelly D, Herrlinger U, Simon M. Seizures in patients with low-grade gliomas—­incidence, ­pathogenesis, surgical management, and ­pharmacotherapy. Adv Tech Stand Neurosurg. 2010;35:81–111.

    Article  PubMed  CAS  Google Scholar 

  57. Immonen A, Vapalahti M, Tyynelä K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004;10:967–72.

    Article  PubMed  CAS  Google Scholar 

  58. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated ­glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–401.

    Article  PubMed  CAS  Google Scholar 

  59. Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg. 2001;95:735–45.

    Article  PubMed  CAS  Google Scholar 

  60. McGirt MJ, Chaichana KL, Attenello FJ, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery. 2008;63:700–7.

    Article  PubMed  Google Scholar 

  61. Mandonnet E, Delattre JY, Tanguy ML, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53:524–8.

    Article  PubMed  Google Scholar 

  62. van den Bent MJ, Afra D, de Witte O, EORTC Radiotherapy and Brain Tumor Groups and the UK Medical Research Council. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet. 2005;366:985–90.

    Article  PubMed  Google Scholar 

  63. Douw L, Klein M, Fagel SS, van den Heuvel J, et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 2009;8:810–8.

    Article  PubMed  Google Scholar 

  64. Pouratian N, Gasco J, Sherman JH, et al. Toxicity and efficacy of protracted low dose temozolomide for the treatment of low grade gliomas. J Neurooncol. 2007;82:281–8.

    Article  PubMed  CAS  Google Scholar 

  65. Kesari S, Schiff D, Drappatz J, LaFrankie D, et al. Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin Cancer Res. 2009;15:330–7.

    Article  PubMed  CAS  Google Scholar 

  66. Kaloshi G, Benouaich-Amiel A, Diakite F, et al. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology. 2007;68(21):1831–6.

    Article  PubMed  CAS  Google Scholar 

  67. Hu A, Xu Z, Kim RY, Nguyen A, et al. Seizure control: a secondary benefit of chemotherapeutic temozolomide in brain cancer patients. Epilepsy Res. 2011;95:270–2.

    Article  PubMed  Google Scholar 

  68. Sherman JH, Moldovan K, Yeoh HK, et al. Impact of temozolomide chemotherapy on seizure frequency in patients with low-grade gliomas. J Neurosurg. 2011;114:1617–21.

    Article  PubMed  Google Scholar 

  69. Claus EB, Horlacher A, Hsu L, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103:1227–33.

    Article  PubMed  Google Scholar 

  70. Janny P, Cure H, Mohr M, Heldt N, et al. Low grade supratentorial astrocytomas: management and prognostic factors. Cancer. 1994;73:1937–45.

    Article  PubMed  CAS  Google Scholar 

  71. Johannesen TB, Langmark F, Lote K. Progress in long-term survival in adult patients with supratentorial low-grade gliomas: a population-based study of 993 patients in whom tumors were diagnosed between 1970 and 1993. J Neurosurg. 2003;99:854–62.

    Article  PubMed  Google Scholar 

  72. Talos IF, Zou KH, Ohno-Machado L, et al. Supratentorial low grade glioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology. 2006;239:506–13.

    Article  PubMed  Google Scholar 

  73. Chang EF, Clark A, Smith JS, et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg. 2011;114:566–73.

    Article  PubMed  Google Scholar 

  74. Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.

    Article  PubMed  Google Scholar 

  75. Mariani L, Siegenthaler P, Guzman R, et al. The impact of tumour volume and surgery on the outcome of adults with supratentorial WHO grade II astrocytomas and oligoastrocytomas. Acta Neurochir (Wien). 2004;146:441–8.

    Article  CAS  Google Scholar 

  76. Floeth FW, Pauleit D, Sabel M, et al. Prognostic value of O-(2–18 F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007;48:519–27.

    Article  PubMed  CAS  Google Scholar 

  77. Pignatti F, van den Bent M, Curran D, European Organization for Research and Treatment of Cancer Brain Tumor Cooperative Group; European Organi­zation for Research and Treatment of Cancer Radiotherapy Cooperative Group. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol. 2002;20:2076–84.

    Article  PubMed  Google Scholar 

  78. Pallud J, Mandonnet E, Duffau H, et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60:380–3.

    Article  PubMed  Google Scholar 

  79. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.

    PubMed  Google Scholar 

  80. Guillevin R, Menuel C, Abud L. Proton MR spectroscopy in predicting the increase of perfusion MR imaging for WHO grade II gliomas. J Magn Reson Imaging. 2011. doi:10.1002/jmri.22862.

  81. Guillevin R, Menuel C, Duffau H, et al. Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neurooncol. 2008;87:181–7.

    Article  PubMed  CAS  Google Scholar 

  82. Stummer W, Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13.

    Article  PubMed  CAS  Google Scholar 

  83. Vecht CJ, Avezaat CJ, van Putten WL. The influence of the extent of surgery on the neurological function and survival in malignant glioma. A retrospective analysis in 243 patients. J Neurol Neurosurg Psychiatry. 1990;53:466–71.

    Article  PubMed  CAS  Google Scholar 

  84. Prognostic factors for high-grade malignant glioma: development of a prognostic index. A Report of the Medical Research Council Brain Tumour Working Party. J Neurooncol. 1990;9:47–55.

    Google Scholar 

  85. Steltzer KJ, Sauvé KI, Spence AM, et al. Corpus callosum involvement as a prognostic factor for patients with high-grade astrocytoma. Int J Radiat Oncol Biol Phys. 1997;38:27–30.

    Article  PubMed  CAS  Google Scholar 

  86. Stummer W, Reulen HJ, Meinel T, ALA-Glioma Study Group. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62:564–76.

    Article  PubMed  Google Scholar 

  87. Pichlmeier U, Bink A, Schackert G, Stummer W, ALA Glioma Study Group. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol. 2008;10:1025–34.

    Article  PubMed  Google Scholar 

  88. Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115:3–8.

    Article  PubMed  Google Scholar 

  89. McGirt MJ, Mukherjee D, Chaichana KL. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65:463–9. discussion.

    Article  PubMed  Google Scholar 

  90. Stummer W, Nestler U, Stockhammer F, et al. Favorable outcome in the elderly cohort treated by concomitant temozolomide radiochemotherapy in a multicentric phase II safety study of 5-ALA. J Neurooncol. 2011;103:361–70.

    Article  PubMed  CAS  Google Scholar 

  91. Surawicz TS, McCarthy BJ, Kupelian V. Descriptive epidemiology of primary brain and CNS tumors. Results from the central brain tumor registry of the United States, 1990–1994. Neuro Oncol. 1999;1:14–25.

    PubMed  CAS  Google Scholar 

  92. Hutchins LF, Unger JM, Crowley JJ, et al. Underrepresentation of patients 65 years of age or older in cancer-treatment trials. N Engl J Med. 1999;341:2061–7.

    Article  PubMed  CAS  Google Scholar 

  93. Gross CP, Herrin J, Wong N, et al. Enrolling older persons in cancer trials: the effect of ­socio-demographic, protocol, and recruitment center characteristics. J Clin Oncol. 2005;23:4755–63.

    Article  PubMed  Google Scholar 

  94. Yee KW, Pater JL, Pho L, et al. Enrollment of older patients in cancer treatment trials in Canada: why age is a barrier? J Clin Oncol. 2003;21:1618–23.

    Article  PubMed  Google Scholar 

  95. Kita D, Ciernik IF, Vaccarella S, et al. Age as predictive factor in glioblastomas: population-based study. Neuroepidemiology. 2009;33:17–22.

    Article  PubMed  Google Scholar 

  96. Iwamoto FM, Reiner AS, Panageas KS, et al. Patterns of care in elderly glioblastoma patients. Ann Neurol. 2008;64:628–34.

    Article  PubMed  Google Scholar 

  97. Kelly PJ, Hunt C. The limited value of cytoreductive therapy in elderly patients with malignant gliomas. Neurosurgery. 1994;34:62–6.

    Article  PubMed  CAS  Google Scholar 

  98. Ampil F, Fowler M, Kookmin K. Intracranial astrocytoma in elderly patients. J Neurooncol. 1992;12:125–30.

    Article  PubMed  CAS  Google Scholar 

  99. Kushnir I, Tzuk-Shina T. Efficacy of treatment for glioblastoma multiforme in elderly patients (65+): a retrospective analysis. Isr Med Assoc J. 2011;13:290–4.

    PubMed  Google Scholar 

  100. Brandes AA, Vastola F, Basso U, et al. A prospective study on glioblastoma in the elderly. Cancer. 2003;97:657–62.

    Article  PubMed  Google Scholar 

  101. Berger MS, Rostomily RC. Low grade gliomas: functional mapping resection strategies, extent of resection, and outcome. J Neurooncol. 1997;34:85–101.

    Article  PubMed  CAS  Google Scholar 

  102. Herholz K, Thiel A, Wienhard K, et al. Individual functional anatomy of verb generation. Neuroimage. 1996;3:185–94.

    Article  PubMed  CAS  Google Scholar 

  103. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.

    Article  PubMed  CAS  Google Scholar 

  104. Rasmussen Jr IA, Lindseth F, Rygh OM, et al. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien). 2007;149:365–78.

    Article  Google Scholar 

  105. Reinges MH, Nguyen HH, Krings T, et al. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien). 2004;146:369–77.

    Article  CAS  Google Scholar 

  106. Rau S, Fesl G, Bruhns P, et al. Reproducibility of activations in Broca area with two language tasks: a functional MR imaging study. AJNR Am J Neuroradiol. 2007;28:1346–53.

    Article  PubMed  CAS  Google Scholar 

  107. Romano A, D’Andrea G, Calabria LF. A. Pre- and intraoperative tractographic evaluation of corticospinal tract shift. Neurosurgery. 2011;69:696–704.

    Article  PubMed  Google Scholar 

  108. Berman JI, Berger MS, Chung SW, et al. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg. 2007;107:488–94.

    Article  PubMed  Google Scholar 

  109. Letteboer MM, Willems PW, Viergever MA, Niessen WJ. Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng. 2005;52:268–76.

    Article  PubMed  Google Scholar 

  110. Nimsky C, Ganslandt O, Cerny P, et al. Quantification of, visualization of, and compensating for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 2000;47:1070–80.

    Article  PubMed  CAS  Google Scholar 

  111. Katisko JP, Koivukangas JP. Optically neuronavigated ultrasonography in an intraoperative magnetic resonance imaging environment. Neurosurgery. 2007;60:373–80.

    Article  PubMed  Google Scholar 

  112. Lindner D, Trantakis C, Renner C, et al. Application of intraoperative 3D ultrasound during navigated tumor resection. Minim Invasive Neurosurg. 2006;49:197–202.

    Article  PubMed  CAS  Google Scholar 

  113. Solheim O, Selbekk T, Jakola AS, Unsgård G. Ultrasound-guided operations in unselected high-grade gliomas—overall results, impact of image quality and patient selection. Acta Neurochir (Wien). 2010;152:1873–86.

    Article  Google Scholar 

  114. Kuhnt D, Becker A, Ganslandt O. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol. 2011;13(12):1339–48.

    Article  PubMed  Google Scholar 

  115. Kuhnt D, Ganslandt O, Schlaffer SM. Quantification of glioma removal by intraoperative high-field magnetic resonance imaging: an update. Neurosurgery. 2011;69:852–62.

    Article  PubMed  Google Scholar 

  116. Muragaki Y, Iseki H, Maruyama T, et al. Usefulness of intraoperative magnetic resonance imaging for glioma surgery. Acta Neurochir Suppl. 2006;98:67–75.

    Article  PubMed  CAS  Google Scholar 

  117. Stummer W, Stocker S, Wagner S, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42:518–25.

    Article  PubMed  CAS  Google Scholar 

  118. Widhalm G, Wolfsberger S, Minchev G, et al. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer. 2010;116:1545–52.

    Article  PubMed  CAS  Google Scholar 

  119. Sanai N, Snyder LA, Honea NJ, et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg. 2011;115:740–8.

    Article  PubMed  CAS  Google Scholar 

  120. Willems PW, Taphoorn MJ, Burger H, et al. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg. 2006;104:360–8.

    Article  PubMed  Google Scholar 

  121. Senft C, Bink A, Heckelmann M, et al. Glioma extent of resection and ultra-low-field iMRI: interim analysis of a prospective randomized trial. Acta Neurochir Suppl. 2011;109:49–53.

    Article  PubMed  Google Scholar 

  122. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18–27.

    Article  PubMed  CAS  Google Scholar 

  123. Guggisberg AG, Honma SM, Findlay AM, et al. Mapping functional connectivity in patients with brain lesions. Ann Neurol. 2008;63:193–203.

    Article  PubMed  Google Scholar 

  124. Schiffbauer H, Berger MS, Ferrari P, et al. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with ­intraoperative sensory and motor mapping. J Neurosurg. 2002;97:1333–42.

    Article  PubMed  Google Scholar 

  125. Walker JA, Quiñones-Hinojosa A, Berger MS. Intraoperative speech mapping in 17 bilingual patients undergoing resection of a mass lesion. Neurosurgery. 2004;54:113–8.

    Article  PubMed  Google Scholar 

  126. Maldonado IL, Moritz-Gasser S, de Champfleur NM, et al. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg. 2011;115:770–9.

    Article  PubMed  Google Scholar 

  127. Maldonado IL, Moritz-Gasser S, Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct. 2011;216:263–74.

    Article  PubMed  Google Scholar 

  128. De Benedictis A, Moritz-Gasser S, Duffau H. Awake mapping optimizes the extent of resection for low-grade gliomas in eloquent areas. Neurosurgery. 2010;66:1074–84.

    Article  PubMed  Google Scholar 

  129. Skirboll SS, Ojemann GA, Berger MS, et al. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38:678–84.

    Article  PubMed  CAS  Google Scholar 

  130. Duffau H, Lopes M, Arthuis F, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with(1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76:845–51.

    Article  PubMed  CAS  Google Scholar 

  131. Duffau H. A personal consecutive series of surgically treated 51 cases of insular WHO Grade II glioma: advances and limitations. J Neurosurg. 2009;110:696–708.

    Article  PubMed  Google Scholar 

  132. Simon M, Neuloh G, von Lehe M, Meyer B, Schramm J. Insular gliomas: the case for surgical management. J Neurosurg. 2009;110:685–95.

    Article  PubMed  Google Scholar 

  133. Kim SS, McCutcheon IE, Suki D, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64:836–45.

    Article  PubMed  Google Scholar 

  134. Ius T, Angelini E, de Thiebaut Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56:992–1000.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Stummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Stummer, W. (2013). Surgical Management of Glial Cancers. In: Watts, C. (eds) Emerging Concepts in Neuro-Oncology. Springer, London. https://doi.org/10.1007/978-0-85729-458-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-458-6_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-457-9

  • Online ISBN: 978-0-85729-458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics