Skip to main content

Abstract

Chapter 3 gives a brief overview of structural shape and topology optimization. Then several common optimization methods, such as SQP and genetic algorithms, are investigated in more detail. This is followed by a discussion of sensitivity analysis techniques with an in-depth look at the FDM and SAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz OC, Campbell JS. Shape Optimization and sequential linear Programming. In: Gallagher RH, Zienkiewicz OC, editors. Optimum Structural Design. Chichester: John Wiley; 1973. Chapter 7.

    Google Scholar 

  2. Haftka RT, Grandhi RV. Structural Shape Optimization — a Survey. Comput Methods Appl Mech Eng 1986;57:91–106.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ding Y. Shape Optimization of Structures: a Literature Survey. Comput Struct 1986;l:985–1004.

    Article  Google Scholar 

  4. Topping BHV. Shape Optimization of skeletal Structures: a Review. ASCE, J Struct Eng 1983;109:1933–51.

    Article  Google Scholar 

  5. Ramm E, Bletzinger KU, Kimmich S. Strategies in Shape Optimization of free Form Shells. In: Wriggers P, Wagner W, editors. Festschrift Erwin Stein: Nonlinear Computational Mechanics — a State of the Art. Heidelberg: Springer; 1991.

    Google Scholar 

  6. Schittkowski K, Zillober C. Nonlinear Programming. In UNESCO: Encyclopedia of Life Support Systems (EOLSS), Topic: Optimization and Operations Research; 2002. p. 157–77.

    Google Scholar 

  7. Bletzinger KU. Formoptimierung von Flächentragwerken [PhD thesis]. Stuttgart: Institut für Baustatik, Universität Stuttgart; 1990. Report No.: 11.

    Google Scholar 

  8. Hinton E, Sienz J, Hassani, B. Fully integrated Design Optimization for Engineering Structures. In: Topping BHV, editor. Proceedings of 3rd International Conference on Computational Structures and Technology; 1996 Aug 21–23; Budapest, Hungary. Edinburgh: Saxe-Coburg Publications; 1996.

    Google Scholar 

  9. Papalambros PY, Chiredast, M. Integrated structural Optimization System. In: Bendsøe MP, Soares CAM, editors. Proceedings of NATO/ARW Topology Design of Structures; 1993; Sesimbra, Portugal. Kluwer Academic Publishers; 1993. p. 501–14.

    Chapter  Google Scholar 

  10. Lee SJ, Lee JEB, Hinton E. Shell Topology Optimization using the layered artificial Material Model. Int J Numer Methods Eng 2000;47(4):843–67.

    Article  Google Scholar 

  11. Sienz J, Hinton E, Bugeda G, Bulman, SD. Some Studies on integrating Topology and Shape Optimization. In: Papadrakakis M, Topping BHV, editors. Innovative Computational Methods for Structural Mechanics. Edinburgh: Saxe-Coburg Press; 1998. Chapter 11, p. 223–56.

    Google Scholar 

  12. Hinton E, Sienz J, Bulman SD, Lee SJ, Ghasemi MR. Integrated structural Topology, Shape and Sizing Optimization Methods. In: CD-ROM Proceedings of 4th World Congress on Computational Mechanics; 1998 Jun 29-Jul 2; Buenos Aires, Argentina. Barcelona: CIMNE; 1998.

    Google Scholar 

  13. Rozvany GIN, Bendsøe MP, Kirsch U. Layout Optimization of Structures. Appl Mech Rev 1995;48:41–119.

    Article  Google Scholar 

  14. Hassani B, Hinton E. A Review of Homogenization and Topology Optimization; Part I: Homogenization Theory for Media with periodic Structure; Part II: Analytical and numerical Solution of Homogenization Equations; Part III: Topology Optimization using Optimality Criteria. Comput Struct 1998;69(6):707–56.

    Article  MATH  Google Scholar 

  15. Xie YM, Steven GP. Evolutionary structural Optimization. Berlin: Springer Verlag; 1997.

    Book  MATH  Google Scholar 

  16. Querin OM. Evolutionary structural Optimization: Stress-based Formulation and Implementation [PhD thesis]. Sydney: Department of Aeronautical Engineering, University of Sydney; 1997.

    Google Scholar 

  17. Rozvany GIN. Problem Classes, Solution Strategies and unified Terminology of FE-based Topology Optimization. In: Rozvany GIN, Olhoff N, editors. Topology Optimization of Structures and Composite Continua, NATO Science Series, II. Mathematics, Physics and Chemistry, Vol 7. Kluwer Academic Publishers; 2000. ISBN 0-7923-6807-X. p. 19–36.

    Google Scholar 

  18. Rozvany GIN. Aims, Scope, Methods, History and unified Terminology of Computer-aided Topology Optimization in structural Mechanics. Struct Optim 2001;21(2):90–108.

    Article  Google Scholar 

  19. Rozvany GIN. Stress Ratio and Compliance based Methods in Topology Optimization — a critical Review. Struct Optim 2001;21(2):109–19.

    Article  Google Scholar 

  20. Bendsøe MP, Kikuchi N. Generating optimal Topologies in structural Design using a Homogenization Method. Comput Methods Appl Mech Eng 1998;71:197–224.

    Article  Google Scholar 

  21. Bendsøe MP. Optimal Shape Design as a Material Distribution Problem. Struct Optim 1989;l:193–202.

    Article  Google Scholar 

  22. Sigmund O. A 99 Line Topology Optimization Code written in Matlab. Struct Optim 2001;21(2):120–7.

    Article  MathSciNet  Google Scholar 

  23. Bulman SD, Hinton E. Constrained adaptive Topology Optimization. Des Optim 1999;l(4):419–39.

    Google Scholar 

  24. Paley M, Fuchs MB, Miroshnik E. The Aboudi micromechanical Model for Shape Design of Structures. In: Topping BHV, editor. Proceedings of the 3rd International Conference Computers Structures Technology; 1996; Budapest, Hungary. Edinburgh: Civil-Comp Press; 1996.

    Google Scholar 

  25. Walther F, Mattheck C. Local stiffening and sustaining of Shell Structures by SKO and CAO. In: Brebbia CA, Hernandez S, editors. Proceeding of International Conference on Structural Optimization; 1993; Zaragoza, Spain. Southampton: Computational Mechanics; 1993. p. 181–8.

    Google Scholar 

  26. Mattheck C, Burkhardt S. A New Method of Structural Shape Optimization based on Biological Growth [technical report]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH; 1989.

    Google Scholar 

  27. Mattheck C. Engineering Components grow like Trees. Materialwiss Werkst 1990;21:143–68.

    Article  Google Scholar 

  28. Mattheck C. Trees — the Mechanical Design. Heidelberg: Springer Verlag; 1991.

    Google Scholar 

  29. Mattheck C, Kubler H. Wood — the Internal Optimization of Trees. Heidelberg: Springer Verlag; 1995.

    Google Scholar 

  30. Jancu G, Schnack E. Control of the von Mises Stress with dynamic Programming. In: Proceedings of GAMM Meeting, Siegen, Germany; 1988.

    Google Scholar 

  31. Umetani Y, Hirai S. Shape Optimization of Beams subject to Displacement Restrictions on the Basis of the growing-reforming Procedure. Bull Jpn Soc Mech Eng 1978;21:1113–9.

    Article  Google Scholar 

  32. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive Bone-remodelling Theory applied to Prosthetic-design Analysis. J Biomech 1987;22:1135–50.

    Article  Google Scholar 

  33. Chen JL, Tsai WC. A Study of simulated biological Growth Approaches for Shape Optimization. In: Comput Methods Appl Mech Eng. Singapore: World Scientific; 1992. p. 1174–9.

    Google Scholar 

  34. Chen JL, Tsai WC. Shape Optimization by using simulated biological Growth Approaches. AIAA J 1993;31(11):2143–7.

    Article  MathSciNet  Google Scholar 

  35. Azegami H. A Proposal of a Shape Optimization Method using a constitutive Equation of Growth. Int J Jpn Soc Mech Eng 1990;33(l):64–71.

    Google Scholar 

  36. Rajan SD, Belegundu AD. Shape optimal Design using fictitious Loads. AIAA J 1989;27(l):102–7.

    Article  Google Scholar 

  37. Querin OM, Steven GP, Xie YM. Improved computational Efficiency using bidirectional evolutionary structural Optimization (BESO). In: CD-ROM Proceedings of 4th World Congress on Computational Mechanics; 1998 Jun 29-Jul 2; Buenos Aires, Argentina. Barcelona: CIMNE; 1998.

    Google Scholar 

  38. Maute K, Ramm E. Adaptive Techniques in Topology Optimization. In: Proceedings of 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization; 1; AIAA; USA; 1994. p. 121–31.

    Google Scholar 

  39. Maute K, Ramm E. Adaptive Topology Optimization. Struct Optim 1995;10: 100–12.

    Article  Google Scholar 

  40. Eschenauer HA, Kobolev V, Schumacher A. Bubble Method of Topology and Shape Optimization of Structures. Struct Optim 1994;8:42–51.

    Article  Google Scholar 

  41. Kim H, Querin OM, Steven GP, Xie YM. Development of an intelligent Cavity Creation (ICC) Algorithm for evolutionary structural Optimization. In: Proceedings of the Australasian Conference on Structural Optimization; 1998; Sydney, Australia. p. 241–50.

    Google Scholar 

  42. Vanderplaats GN. DOT User Manual. VMA Engineering, USA; 2000.

    Google Scholar 

  43. Kreisseimeier G, Steinhauser R. Application of Vector Performance Optimization to a robust Control Loop Design for a Fighter Aircraft. Int J Control 1983;37:251–84.

    Article  Google Scholar 

  44. Kreisseimeier G, Steinhauser R. Systematic Control Design by optimizing a Vector Performance Index. In: Proceedings of International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems; 1979; Zurich, Switzerland. p. 113–7.

    Google Scholar 

  45. Eschenauer HA, Post U, Bermicker M. Einsatz der Optimierungsprozedur SAPOP zur Auslegung von Bauteilkomponenten. Bauingenieur 1988;63:515–26.

    Google Scholar 

  46. Kimmich S, Ramm E. Structural Optimization and Analysis with Program System CARAT. In Eschenauer HA, Thierauf G, editors. Discretization Methods and Structural Optimization-Procedures and Applications. Berlin: Springer-Verlag; 1989.

    Google Scholar 

  47. Stegmüller H, Bletzinger KU, Kimmich S. Programmsystem CARAT, Eingabebeschreibung und Dokumentation [internal report]. Stuttgart: Institut für Baustatik, Universität Stuttgart; 1988.

    Google Scholar 

  48. Schmit LA. Symposium Summary and concluding Remarks. In: Bennett JA, Botkin ME, editors. The Optimum Shape. New York: Plenum Press; 1986.

    Google Scholar 

  49. Özakça M. Analysis and Optimal Design of Structures with Adaptivity [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1993. Report No.: C/Ph/168/93.

    Google Scholar 

  50. Sienz J. Integrated Structural Modelling, adaptive Analysis and Shape Optimization [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1994. Report No.: C/Ph/181/94.

    Google Scholar 

  51. Powell MJD. VMCWD: A Fortran Subroutine for constrained Optimization [internal report]. Cambridge: Department of Applied Mathematics and Theoretical Physics, University of Cambridge; 1982. Report No.: DAMTP 1982/NA4.

    Google Scholar 

  52. Chamberlain RM, Lemarechal C, Pedersen HC, Powell MJD. The Watchdog Technique for forcing Convergence in Algorithms for constrained Optimization. Math Program Study 1982;16:1–17.

    Article  MathSciNet  MATH  Google Scholar 

  53. Hernandez S. Mathematical Programming Theory of Optimum Engineering Design. In: Adeli H, editor. Advances in Design Optimization. Chapman and Hall; 1994. Now published by Thompson Publishing Services.

    Google Scholar 

  54. Schittkowski K. Nonlinear Programming Software [software manual]. Bayreuth: Department of Mathematics, Universität Bayreuth; 1991.

    Google Scholar 

  55. Svanberg K. The Method of moving Asymptotes. Int J Numer Methods Eng 1987;23:359–73.

    Article  MathSciNet  Google Scholar 

  56. Lasdon LS, Warren AD, Jain A, Ratner M. Design and testing of a generalized reduced Gradient Code for nonlinear Programming. ACM Trans Math Software 1978;4(1):34–50.

    Article  MATH  Google Scholar 

  57. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley; 1989.

    Google Scholar 

  58. Fogel DB. Applying evolutionary Programming to selected traveling Salesman Problems. Cybernet Syst 1993;24(1):27–36.

    Article  MathSciNet  Google Scholar 

  59. Back T, Hoffmeister F, Schwefel HP. A Survey of Evolution Strategies. In: Belew RK, Booker LB, editors. ICGA IV. Proceedings of the 4th International Conference on Genetic Algorithms; 1991. San Diego: Morgan Kaufman Publishers Inc. p. 2–9.

    Google Scholar 

  60. Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated Annealing. Science 1983;220(4598):671–80.

    Article  MathSciNet  MATH  Google Scholar 

  61. Kennedy J, Eberhart RC. Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, IV; 1995; Piscataway, NJ. p. 1942–8.

    Google Scholar 

  62. Edgar TF, Himmelblau, DM. Optimization of Chemical Processes. New York: McGraw-Hill Book Company; 1988.

    Google Scholar 

  63. Schittkowski K, Zillober C, Zotemantel R. Numerical Comparison of nonlinear Programming Algorithms for structural Optimization. Struct Optim 1994;7:1–19.

    Article  Google Scholar 

  64. Vanderplaats GN, Moses F. Structural Optimization by Methods of feasible Directions. Comput Struct 1973;3:739–55.

    Article  Google Scholar 

  65. Fleury C. Dual Methods for convex separable Problems. In: Rozvany GIN, editor. Proceedings of NATO/DFG ASI Optimization of Large Structural Systems, 1. Berchtesgaden, Germany. Dordrecht: Kluwer Academic Publishers; 1993. p. 509–30.

    Google Scholar 

  66. Stoer J. Foundations of recursive quadratic Programming Methods for solving nonlinear Programs. In: Schittkowski K, editor. Computational Mathematical Programming, NATO ASI Series, Series F: Computer and Systems Sciences, 15. Springer; 1985.

    Google Scholar 

  67. Spellucci P. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser; 1993.

    Google Scholar 

  68. Papalambros PY, Wilde, DJ. Principles of Optimal Design: Modelling, Computation. Cambridge: Cambridge University Press; 2001. ISBN 0-521-62727-3.

    Google Scholar 

  69. Lee SJ. Analysis and Optimization of Shells [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1998. Report No.: C/Ph/223/98.

    Google Scholar 

  70. Fox RL. Optimization Methods for Engineering Design. Reading: Addison-Wesley; 1971.

    Google Scholar 

  71. Hadley G. Nonlinear and Dynamic Programming. Reading: Addison-Wesley; 1964.

    MATH  Google Scholar 

  72. Hildebrand FB. Advanced Calculus for Applications. Prentice-Hall; 1976.

    Google Scholar 

  73. Fletcher R, Reeves CM. Function Minimization by conjugate Gradients. Br Comput J 1964; 7: 149–54.

    Article  MathSciNet  MATH  Google Scholar 

  74. Vanderplaats GN. Numerical Optimization Techniques for Engineering Design. McGraw-Hill; 1984.

    Google Scholar 

  75. Arora JS. Introduction to Optimum Design. New York: McGraw-Hill; 1989.

    Google Scholar 

  76. Zoutendijk G. Methods of Feasible Directions. Amsterdam: Elsevier; 1960.

    MATH  Google Scholar 

  77. Powell MJD. A fast Algorithm for nonlinearly constrained Optimization Calculations [internal report]. Cambridge: Department of Applied Mathematics and Theoretical Physics, University of Cambridge; 1977. Report No.: DAMPTP 77/NA2.

    Google Scholar 

  78. Hajela P. Genetic Search-an Approach to the non-convex Optimization Problem. AIAA J 1990;28(7):1205–10.

    Article  Google Scholar 

  79. Rajeev S, Krishnamoorthy CS. Discrete Optimization of Structures using GA. ASCE, J Struct Eng 1992; 118(5):1233–50.

    Article  Google Scholar 

  80. Sugimoto H. Discrete Optimization of Truss Structures and GAs. In: Choi CK, Sugimoto H, Yun CB, editors. Proceedings of Korea-Japan Joint Seminar on Structural Optimization. Seoul, Korea; 1992. p. 1–10.

    Google Scholar 

  81. Arora JS, Govil AK. An efficient Method for optimal structural Design by Substructuring. Comput Struct 1977;7:507–15.

    Article  Google Scholar 

  82. Haug EJ, Arora JS. Applied Optimal Design. New York: John Wiley & Sons; 1979.

    Google Scholar 

  83. Park GJ, Lee WI. A structural Optimization post-processing Taguchi Method. In: Choi CK, Sugimoto H, Yun, CB, editors. Proceedings of Korea-Japan Joint Seminar on Structural Optimization. Seoul, Korea; 1992. p. 109–17.

    Google Scholar 

  84. Belblidia F. Fully Integrated Design Optimization for Plate Structures — FIDO Plates [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1999. Report No.: C/Ph/231/99.

    Google Scholar 

  85. Holland J. Adaptation in Natural and Artificial Systems. University of Michigan Press; 1975.

    Google Scholar 

  86. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Englewood Cliffs: Addison-Wesley; 1989.

    MATH  Google Scholar 

  87. Ghasemi MR. Structural Optimization of Trusses and axisymmetric Shells using gradient based Methods and Genetic Algorithms [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1996. Report No.: C/Ph/207/96.

    Google Scholar 

  88. Ghasemi MR, Hinton E. Truss Optimization using Genetic Algorithms. In: Topping BHV, editor. Proceedings of Advances in Computational Structures Technology. 1996. Edinburgh: Civil Comp Press; 1996. p. 59–75.

    Chapter  Google Scholar 

  89. DeJong K. An Analysis of the Behaviour of a Class of genetic adaptive Systems [PhD thesis]. Department of Computer and Communications Sciences, University of Michigan; 1975.

    Google Scholar 

  90. Grefenstette JJ, Fitzpatrick, JM. Genetic Search with approximate Function Evaluations. In: Proceedings of First International Conference on Genetic Algorithms and their Applications. L Erlbaum Inc; 1985. p. 112–20.

    Google Scholar 

  91. Al-Khamis MTA. Structural Optimization for static and free Vibration Conditions using genetic and gradient-based Algorithms [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1996. Report No.: C/Ph/ 202/96.

    Google Scholar 

  92. Whitley D. A Genetic Algorithm Tutorial [technical report]. Department of Computer Science, Colorado State University; 1993. Report No.: CS-93-103.

    Google Scholar 

  93. Toropov VV. Simulation Approach to structural Optimization. Struct Optim 1989;l:37–46.

    Article  Google Scholar 

  94. Toropov VV, Filatov AA, Polynkin AA. Multiparameter structural Optimization using FEM and Multipoint explicit Approximations. Struct Optim 1993;6:7–14.

    Article  Google Scholar 

  95. Koza JR. Genetic Programming: On the Programming of Computers by Means of natural Selection. Cambridge: MIT Press; 1992.

    MATH  Google Scholar 

  96. Ballard DH. An Introduction to Natural Computation. Cambridge: MIT Press; 1997.

    Google Scholar 

  97. Toropov VV. Modelling and Approximation Strategies in Optimization — global and mid-range Approximations, Response Surface Methods, Genetic Programming, low/high Fidelity Models. In: Blachut J, Eschenauer HA, editors. Emerging Methods for Multidisciplinary Optimization, CISM Courses and Lectures, No. 425, International Centre for Mechanical Sciences. New York: Springer; 2001.

    Google Scholar 

  98. Bates SJ, Sienz J, Langley DS. Formulation of the Audze-Eglais Design of Experiments using a Genetic Algorithm. Adv Eng Software. In press 2003.

    Google Scholar 

  99. Haug EJ, Choi KK, Komkow U. Design Sensitivity Analysis of structural Systems. Mathematics in Science and Engineering 1986; 177.

    Google Scholar 

  100. Venkayya VB. Structural Optimization: a Review and some Recommendations. Int J Numer Methods Eng 1978.

    Google Scholar 

  101. Austin MA, Voon BK. Structural Optimization in a distributed Computing Environment. Comput Methods Appl Mech Eng 1993;107:173–92.

    Article  Google Scholar 

  102. Haftka RT, Gürdal Z, Kamat MP. Elements of Structural Optimization. Dordrecht: Kluwer Academic Publishers; 1990.

    MATH  Google Scholar 

  103. Tortorelli DA, Michaleris P. Design Sensitivity Analysis: Overview and Review. Inverse Probl Eng 1994;l:71–105.

    Article  Google Scholar 

  104. Kimmich S. Strukturoptimierung und Sensibilitätsanalyse mit finiten Elementen [PhD thesis]. Stuttgart: Institut für Baustatik, Universität Stuttgart; 1990. Report No.: 12.

    Google Scholar 

  105. Haslinger J, Neittaanmäki P. Finite Element Approximation for Optimal Shape Design: Theory and Applications. New York: Wiley & Sons; 1988.

    MATH  Google Scholar 

  106. Griewank A, Corliss G. Automatic Differentiation of Algorithms. Philadelphia: SIAM; 1991.

    MATH  Google Scholar 

  107. Berz T, Bischof C, Corliss G, Griewank A. Computational Differentiation: Techniques, Applications, and Tools. Philadelphia: SIAM; 1996.

    MATH  Google Scholar 

  108. Bischof C. A Collection of automatic Differentiation Tools. http://www.unix.mcs.anl.gov/autodiff/AD_Tools/index.html; 1999.

  109. Gill PE, Murray W, Saunders MA, Wright MH. Computing forward Differences for numerical Optimization. SIAM J Sci Stat Comput 1983;4:310–21.

    Article  MathSciNet  MATH  Google Scholar 

  110. Schittkowski K. NLPQLP: a new Fortran Implementation of a sequential quadratic Programming Algorithm for parallel Computing [internal report]. Bayreuth: Department of Mathematics, Universität Bayreuth; 2002.

    Google Scholar 

  111. Vanderplaats GN. Thirty Years of modern Structural Optimization. Adv Eng Software 1993;16:81–8.

    Article  Google Scholar 

  112. Olhoff N, Rasmussen J, Lund E. Method of Exact Numerical Differentiation for Error Elimination in Finite Element Based Semi-Analytical Shape Sensitivity Analyses [special report]. Ålborg: Institute of Mechanical Engineering, Ålborg Unversity; 1992. Report No.: 10.

    Google Scholar 

  113. Wang BP, Babu D, Lawrence KL. Shape Design Sensitivity Analysis using closed-form Stiffness Matrix for hierarchical triangular Elements. Comput Struct 1992;43(l):69–75.

    Article  MATH  Google Scholar 

  114. Vital CA, Lee HS, Haber RB. The consistent Tangent Operator for Design Sensitivity Analysis of History-dependent Response. 1991.

    Google Scholar 

  115. Sienz J, Hinton E. Reliable structural Optimization with Error Estimation, Adaptivity and robust Sensitivity Analysis. Comput Struct 1997;64(1-4):31–63.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London

About this chapter

Cite this chapter

Hinton, E., Sienz, J., Özakça, M. (2003). Structural Optimization Methods and Algorithms. In: Analysis and Optimization of Prismatic and Axisymmetric Shell Structures. Springer, London. https://doi.org/10.1007/978-0-85729-424-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-424-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1059-0

  • Online ISBN: 978-0-85729-424-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics