Advertisement

Virtual Multiple-Fracture Mandibular Reconstruction

  • Ananda S. ChowdhuryEmail author
  • Suchendra M. Bhandarkar
Chapter
  • 697 Downloads
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

From a surgical perspective, the craniofacial reconstruction problem assumes even greater complexity when faced with multiple fractures since the operating surgeon has to identify the opposable fracture surfaces before physically registering them. Very often, the cost of surgery becomes prohibitive with the increased operative time necessary to complete the entire reconstruction process. Moreover, the increased operative time also poses increased operative trauma and an increased risk of postoperative complications to the patient. In this chapter, the problem of virtual craniofacial reconstruction in the presence of multiple fractures is shown to resemble that of automated assembly of a 3D jigsaw puzzle and to have a worst-case exponential-time complexity when formulated as the Traveling Salesperson Problem (TSP). In an alternative formulation, the problem of virtual craniofacial reconstruction is modeled as one of maximum-weight graph matching which, in contrast, is shown to have a polynomial-time complexity in the worst case. The surface matching algorithms described in the previous chapter are used to achieve pairwise registration of the fracture surfaces. The global shape of the mandible is monitored at the end of each pairwise surface registration step by computing the Tanimoto coefficient between the partially reconstructed mandible and an intact reference mandible.

References

  1. 2.
    Ogundare BO, Bonnick A, Bayley N (2003) Pattern of mandibular fractures in an urban major trauma center. J Oral Maxillofac Surg 61(6):713–718 CrossRefGoogle Scholar
  2. 3.
    Zahl C, Muller D, Felder S, Gerlach KL (2003) Cost of miniplate osteosynthesis for treatment of mandibular fractures: a prospective evaluation. Gesundheitswesen 65(10):561–565 CrossRefGoogle Scholar
  3. 33.
    Christofides N (1975) Graph theory: an algorithmic approach. Academic Press, San Diego zbMATHGoogle Scholar
  4. 67.
    Yarger R, Quek F (2000) Surface parameterization in volumetric images for feature classification. In: Proc first IEEE int symp bioinformatics and biomed engr, Arlington, VA, USA, pp 297–304 CrossRefGoogle Scholar
  5. 74.
    Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863 CrossRefGoogle Scholar
  6. 87.
    Wolfson H, Schonberg E, Kalvin A, Lamdan Y (1988) Solving jigsaw puzzles by computer. Ann Oper Res 12:51–64 CrossRefMathSciNetGoogle Scholar
  7. 88.
    Webster RW, LaFollette PS, Stafford RL (1991) Isthmus critical points for solving jigsaw puzzles in computer vision. IEEE Trans Syst Man Cybern 21(5):1271–1278 CrossRefGoogle Scholar
  8. 89.
    Da Gama Leitao HC, Stolfi J (2002) A multiscale method for the reassembly of two-dimensional fragmented objects. IEEE Trans Pattern Anal Mach Intell 24(9):1239–1251 CrossRefGoogle Scholar
  9. 90.
    Yao FH, Shao GF (2003) A shape and image merging technique to solve jigsaw puzzles. Pattern Recognit Lett 24(12):1819–1835 CrossRefGoogle Scholar
  10. 91.
    Goldberg D, Malon C, Bern M (2004) A global approach to automatic solution of jigsaw puzzles. Comput Geom Theory Appl 28(3):165–174 MathSciNetGoogle Scholar
  11. 92.
    Makridis M, Papamarkos N (2006) A new technique for solving a jigsaw puzzle. In: Proc thirteenth IEEE int conf on image processing (ICIP), Atlanta, GA, USA, pp 2001–2004 Google Scholar
  12. 93.
    Barequet G, Sharir M (1997) Partial surface and volume matching in three dimensions. IEEE Trans Pattern Anal Mach Intell 19(9):929–948 CrossRefGoogle Scholar
  13. 94.
    Ucoluk G, Toroslu I (1999) Automatic reconstruction of broken 3D surface objects. Comput Graph 23:573–582 CrossRefGoogle Scholar
  14. 95.
    Papaionnou G, Karabassi E, Theoharis T (2002) Reconstruction of three-dimensional objects through matching of their parts. IEEE Trans Pattern Anal Mach Intell 24(1):114–124 CrossRefGoogle Scholar
  15. 96.
    Huang QX, Flory S, Gelfand N, Hofer M, Pottmann H (2006) Reassembling fractured objects by geometric matching. ACM Trans Graph 25(3):569–578 CrossRefGoogle Scholar
  16. 97.
    Kampel M, Sablantig R (2004) On 3D mosaicing of rotationally symmetric ceramic fragments. In: Proc seventeenth int conf on pattern recognition (ICPR), Cambridge, UK, pp 265–268 Google Scholar
  17. 98.
    Willis A, Cooper D (2004) Bayesian assembly of 3D axially symmetric shapes from fragments. In: Proc sixth IEEE int conf on computer vision pattern recognition (CVPR), Washington DC, USA, pp 82–89 Google Scholar
  18. 99.
    Chen WY, Hwang WL, Lin TC (2006) Planar-shape prototype generation using a tree-based random greedy algorithm. IEEE Trans Syst Man Cybern (B) 36(3):649–659 CrossRefGoogle Scholar
  19. 100.
    Carretero JA, Nahon MA (2005) Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms. IEEE Trans Syst Man Cybern (B) 35(6):1144–1155 CrossRefGoogle Scholar
  20. 101.
    Ruan S, Tu F, Pattipati KR, Patterson-Hine A (2004) On a multimode test sequencing problem. IEEE Trans Syst Man Cybern (B) 34(3):1490–1499 CrossRefGoogle Scholar
  21. 102.
    Boole JR, Holtel M, Amoroso P, Yore M (2001) 5196 mandible fractures among 4381 active duty army soldiers, 1980 to 1998. Laryngoscope 111(10):1691–1696 CrossRefGoogle Scholar
  22. 103.
    Clauser L, Galie M, Mandrioli S, Sarti E (2003) Severe panfacial fracture with facial explosion: Integrated and multistaged reconstructive procedures. J Craniofac Surg 14(6):893–898 CrossRefGoogle Scholar
  23. 104.
    Schettler D, Roosen K, Heesen J, Kalff R (1989) Timing and techniques of reconstruction and stabilization of combined craniofacial injuries. Neurosurg Rev 12(1):94–105 CrossRefGoogle Scholar
  24. 105.
    Chen CS, Hsieh WT, Chen JH (2004) Panoramic appearance-based recognition of video contents using matching graphs. IEEE Trans Syst Man Cybern (B) 34(1):179–199 CrossRefMathSciNetGoogle Scholar
  25. 106.
    Chowdhury AS, Bhandarkar SM, Robinson RW, Yu JC (2006) Virtual craniofacial reconstruction from computed tomography image sequences exhibiting multiple fractures. In: Proc thirteenth IEEE int conf on image processing ICIP, Atlanta, GA, USA, pp 1173–1176 Google Scholar
  26. 107.
    Chowdhury AS, Bhandarkar SM, Robinson RW, Yu JC (2009) Virtual multi-fracture craniofacial reconstruction using computer vision and graph matching. Comput Med Imaging Graph 33(5):333–342 CrossRefGoogle Scholar
  27. 108.
    Schwartz JT, Sharir M (1987) Identification of partially obscured objects in two dimensions by matching of noisy characteristic curves. Int J Robot Res 6(2):29–44 CrossRefGoogle Scholar
  28. 109.
    Wolfson H (1990) On curve matching. IEEE Trans Pattern Anal Mach Intell 12(5):483–489 CrossRefGoogle Scholar
  29. 110.
    Costa LF, Cesar RM Jr (2000) Shape analysis and classification, theory and practice. CRC Press, Boca Raton CrossRefGoogle Scholar
  30. 111.
    Burdea GC, Wolfson HJ (1989) Solving jigsaw puzzles by a robot. IEEE Trans Robot Autom 5(6):752–764 CrossRefGoogle Scholar
  31. 112.
    Veltkamp RC (2001) Shape matching: Similarity measures and algorithms. In: Proc IEEE int conf on shape modeling & applications, Genova, Italy, pp 188–197 CrossRefGoogle Scholar
  32. 113.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522 CrossRefGoogle Scholar
  33. 114.
    Mills EJ, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10(6):607–622 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ananda S. Chowdhury
    • 1
    Email author
  • Suchendra M. Bhandarkar
    • 2
  1. 1.Department of Electronics & Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Computer ScienceThe University of GeorgiaAthensUSA

Personalised recommendations