Skip to main content

The Ovariectomized Mice and Rats

  • Chapter
  • First Online:
Osteoporosis Research

Abstract

The most common animals that are used for experimental studies are rodents, mainly rats and mice. Osteoporosis-related research is no exception. As early as 1985, ovariectomized (OVX) rats were used to study postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsumoto T, Ezawa I, Morita K, Kawanobe Y, Ogata E. Effect of vitamin D metabolites on bone metabolism in a rat model of postmenopausal osteoporosis. J Nutr Sci Vitaminol. 1985;31(Suppl):S61-S65.

    PubMed  CAS  Google Scholar 

  2. Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991;15(3):175-191.

    Article  PubMed  CAS  Google Scholar 

  3. Takano-Yamamoto T, Rodan GA. Direct effects of 17 beta-estradiol on trabecular bone in ovariectomized rats. Proc Natl Acad Sci USA. 1990;87(6):2172-2176.

    Article  PubMed  CAS  Google Scholar 

  4. Wronski TJ, Cintron M, Doherty AL, Dann LM. Estrogen treatment prevents osteopenia and depresses bone turnover in ovariectomized rats. Endocrinology. 1988;123(2):681-686.

    Article  PubMed  CAS  Google Scholar 

  5. Orlic I, Borovecki F, Simic P, Vukicevic S. Gene expression profiling in bone tissue of osteoporotic mice. Arh Hig Rada Toksikol. 2007;58(1):3-11.

    PubMed  CAS  Google Scholar 

  6. FDA. Guidelines for Preclinical and Clinical Evaluation of Agents Used for the Prevention of Treatment of Postmeno­pausal Osteoporosis.. Washington, DC: Division of Metab­olism and Endocrine Drug Products, Food and Drug Administration; 1994.

    Google Scholar 

  7. Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int. 1988;43(3):179-183.

    Article  PubMed  CAS  Google Scholar 

  8. Wronski TJ, Dann LM, Scott KS, Cintron M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989;45(6):360-366.

    Article  PubMed  CAS  Google Scholar 

  9. Li M, Shen Y, Wronski TJ. Time course of femoral neck osteopenia in ovariectomized rats. Bone. 1997;20(1):55-61.

    Article  PubMed  CAS  Google Scholar 

  10. Wronski TJ, Dann LM, Horner SL. Time course of vertebral osteopenia in ovariectomized rats. Bone. 1989;10(4):295-301.

    Article  PubMed  CAS  Google Scholar 

  11. Danielsen CC, Mosekilde L, Svenstrup B. Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int. 1993;52(1):26-33.

    Article  PubMed  CAS  Google Scholar 

  12. Ke HZ, Jee WS, Zeng QQ, Li M, Lin BY. Prostaglandin E2 increased rat cortical bone mass when administered immediately following ovariectomy. Bone Miner. 1993;21(3):189-201.

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto N, Jee WS, Ma YF. Bone histomorphometric changes in the femoral neck of aging and ovariectomized rats. Anat Rec. 1995;243(2):175-185.

    Article  PubMed  CAS  Google Scholar 

  14. Jee WS, Yao W. Animal models of bone diseases. Introduction. J Musculoskelet Neuronal Interact. 2001;1(3): 183-184.

    PubMed  CAS  Google Scholar 

  15. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91(3):335-344.

    Article  PubMed  CAS  Google Scholar 

  16. Horowitz M, Jilka RL. Colony stimulating factors and bone remodeling. In: Gowen M, ed. Cytokines and Bone Metabolism. Boca Raton: CRC; 1992:185.

    Google Scholar 

  17. Mundy GR. Cytokines and local factors which affect osteoclast function. Int J Cell Cloning. 1992;10(4):215-222.

    Article  PubMed  CAS  Google Scholar 

  18. Shevde N, Anklesaria P, Greenberger JS, Bleiberg I, Glowacki J. Stromal cell-mediated stimulation of osteoclastogenesis. Proc Soc Exp Biol Med. 1994;205(4):306-315.

    PubMed  CAS  Google Scholar 

  19. Shevde NK, Pike JW. Estrogen modulates the recruitment of myelopoietic cell progenitors in rat through a stromal cell-independent mechanism involving apoptosis. Blood. 1996; 87(7):2683-2692.

    PubMed  CAS  Google Scholar 

  20. Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem. 2001;81(Suppl 36):144-155.

    Article  Google Scholar 

  21. Pacifici R, Brown C, Puscheck E, et al. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA. 1991;88(12):5134-5138.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuda T, Matsui K, Shimakoshi Y, Aida Y, Hukuda S. 1-Hydroxyethylidene-1, 1-bisphosphonate decreases the postovariectomy enhanced interleukin 1 secretion from peritoneal macrophages in adult rats. Calcif Tissue Int. 1991; 49(6):403-406.

    Article  PubMed  CAS  Google Scholar 

  23. Kimble RB, Vannice JL, Bloedow DC, et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Investig. 1994;93(5):­1959-1967.

    Article  PubMed  CAS  Google Scholar 

  24. Kitazawa R, Kimble RB, Vannice JL, Kung VT, Pacifici R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Investig. 1994;94(6):2397-2406.

    Article  PubMed  CAS  Google Scholar 

  25. Pioli G, Basini G, Pedrazzoni M, et al. Spontaneous release of interleukin-I and interleukin-6 by peripheral blood mononuclear cells after oophorectomy. Clin Sci (Lond). 1992; 83(4):503-507.

    CAS  Google Scholar 

  26. Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science (New York, NY). 1992;257(5066):88-91.

    Article  CAS  Google Scholar 

  27. Pottratz ST, Bellido T, Mocharla H, Crabb D, Manolagas SC. 17 beta-Estradiol inhibits expression of human interleukin-6 promoter-reporter constructs by a receptor-dependent mechanism. J Clin Investig. 1994;93(3):944-950.

    Article  PubMed  CAS  Google Scholar 

  28. Shaughnessy SG, Walton KJ, Deschamps P, Butcher M, Beaudin SM. Neutralization of interleukin-11 activity decreases osteoclast formation and increases cancellous bone volume in ovariectomized mice. Cytokine. 2002; 20(2):78-85.

    Article  PubMed  CAS  Google Scholar 

  29. Gao Y, Morita I, Kubota T, Murota S, Aso T. Expression of adhesion molecules LFA-I and ICAM-I on osteoclast precursors during osteoclast differentiation and involvement of estrogen deficiency. Climacteric. 2000;3(4):278-287.

    Article  PubMed  CAS  Google Scholar 

  30. Oshima S, Onodera S, Amizuka N, et al. Macrophage migration inhibitory factor-deficient mice are resistant to ovariectomy-induced bone loss. FEBS Lett. 2006;580(5):1251-1256.

    Article  PubMed  CAS  Google Scholar 

  31. Kanematsu M, Sato T, Takai H, Watanabe K, Ikeda K, Yamada Y. Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res. 2000; 15(7):1321-1329.

    Article  PubMed  CAS  Google Scholar 

  32. Cenci S, Weitzmann MN, Gentile MA, Aisa MC, Pacifici R. M-CSF neutralization and egr-1 deficiency prevent ovariectomy-induced bone loss. J Clin Investig. 2000;105(9):1279-1287.

    Article  PubMed  CAS  Google Scholar 

  33. Bouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG. Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res. 2005; 20(7):1085-1092.

    Article  PubMed  Google Scholar 

  34. Klinck J, Boyd SK. The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif Tissue Int. 2008;83(1):70-79.

    Article  PubMed  CAS  Google Scholar 

  35. Li CY, Schaffler MB, Wolde-Semait HT, Hernandez CJ, Jepsen KJ. Genetic background influences cortical bone response to ovariectomy. J Bone Miner Res. 2005;20(12): 2150-2158.

    Article  PubMed  Google Scholar 

  36. Srivastava AK, Castillo G, Wergedal JE, Mohan S, Baylink DJ. Development and application of a synthetic peptide-based osteocalcin assay for the measurement of bone formation in mouse serum. Calcif Tissue Int. 2000;67(3):255-259.

    Article  PubMed  CAS  Google Scholar 

  37. Srivastava AK, Bhattacharyya S, Castillo G, Miyakoshi N, Mohan S, Baylink DJ. Development and evaluation of C-telopeptide enzyme-linked immunoassay for measurement of bone resorption in mouse serum. Bone. 2000; 27(4):529-533.

    Article  PubMed  CAS  Google Scholar 

  38. Jiang Y, Zhao J, White DL, Genant HK. Micro CT and Micro MR imaging of 3D architecture of animal skeleton. J Musculoskelet Neuronal Interact. 2000;1:45-51.

    PubMed  CAS  Google Scholar 

  39. Breen SA, Loveday BE, Millest AJ, Waterton JC. Stimulation and inhibition of bone formation: use of peripheral quantitative computed tomography in the mouse in vivo. Lab Anim. 1998;32(4):467-476.

    Article  PubMed  CAS  Google Scholar 

  40. Gaumet N, Seibel MJ, Coxam V, Davicco MJ, Lebecque P, Barlet JP. Influence of ovariectomy and estradiol treatment on calcium homeostasis during aging in rats. Arch Physiol Biochem. 1997;105(5):435-444.

    Article  PubMed  CAS  Google Scholar 

  41. Goulding A, Gold E. Effects of chronic prednisolone treatment on bone resorption and bone composition in intact and ovariectomized rats and in ovariectomized rats receiving beta-estradiol. Endocrinology. 1988;122(2):482-487.

    Article  PubMed  CAS  Google Scholar 

  42. Verhaeghe J, Oloumi G, van Herck E, et al. Effects of long-term diabetes and/or high-dose 17 beta-estradiol on bone formation, bone mineral density, and strength in ovariectomized rats. Bone. 1997;20(5):421-428.

    Article  PubMed  CAS  Google Scholar 

  43. Modder UI, Riggs BL, Spelsberg TC, et al. Dose-response of estrogen on bone versus the uterus in ovariectomized mice. Eur J Endocrinol. 2004;151(4):503-510.

    Article  PubMed  Google Scholar 

  44. Edwards MW, Bain SD, Bailey MC, Lantry MM, Howard GA. 17 beta estradiol stimulation of endosteal bone formation in the ovariectomized mouse: an animal model for the evaluation of bone-targeted estrogens. Bone. 1992;13(1):29-34.

    Article  PubMed  CAS  Google Scholar 

  45. Garabedian M, Tanaka Y, Holick MF, Deluca HF. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94(4):1022-1027.

    Article  PubMed  CAS  Google Scholar 

  46. Garabedian M, Holick MF, Deluca HF, Boyle IT. Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci USA. 1972;69(7):1673-1676.

    Article  PubMed  CAS  Google Scholar 

  47. Hori M, Uzawa T, Morita K, Noda T, Takahashi H, Inoue J. Effect of human parathyroid hormone (PTH(1-34)) on experimental osteopenia of rats induced by ovariectomy. Bone Miner. 1988;3(3):193-199.

    PubMed  CAS  Google Scholar 

  48. Hock JM, Gera I, Fonseca J, Raisz LG. Human parathyroid hormone-(1-34) increases bone mass in ovariectomized and orchidectomized rats. Endocrinology. 1988;122(6):2899-2904.

    Article  PubMed  CAS  Google Scholar 

  49. Watson P, Lazowski D, Han V, Fraher L, Steer B, Hodsman A. Parathyroid hormone restores bone mass and enhances ­osteoblast insulin-like growth factor I gene expression in ovariectomized rats. Bone. 1995;16(3):357-365.

    Article  PubMed  CAS  Google Scholar 

  50. Kalu DN, Echon R, Hollis BW. Modulation of ovariectomy-related bone loss by parathyroid hormone in rats. Mech Ageing Dev. 1990;56(1):49-62.

    Article  PubMed  CAS  Google Scholar 

  51. Liu CC, Kalu DN, Salerno E, Echon R, Hollis BW, Ray M. Preexisting bone loss associated with ovariectomy in rats is reversed by parathyroid hormone. J Bone Miner Res. 1991;6(10):1071-1080.

    Article  PubMed  CAS  Google Scholar 

  52. Kimmel DB, Bozzato RP, Kronis KA, et al. The effect of recombinant human (1-84) or synthetic human (1-34) parathyroid hormone on the skeleton of adult osteopenic ovariectomized rats. Endocrinology. 1993;132(4):1577-1584.

    Article  PubMed  CAS  Google Scholar 

  53. Qi H, Li M, Wronski TJ. A comparison of the anabolic effects of parathyroid hormone at skeletal sites with moderate and severe osteopenia in aged ovariectomized rats. J Bone Miner Res. 1995;10(6):948-955.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang KQ, Chen JW, Li QN, et al. Effect of intermittent injection of recombinant human parathyroid hormone on bone histomorphometry of ovariectomized rats. Acta Pharmacol Sin. 2002;23(7):659-662.

    PubMed  CAS  Google Scholar 

  55. Brouwers JE, van Rietbergen B, Huiskes R, Ito K. Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int. 2009;20(11):1823-1835.

    Article  PubMed  CAS  Google Scholar 

  56. Fox J, Miller MA, Newman MK, et al. Daily treatment of aged ovariectomized rats with human parathyroid hormone (1-84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength. Calcif Tissue Int. 2006;79(4):262-272.

    Article  PubMed  CAS  Google Scholar 

  57. Mosekilde L, Danielsen CC, Gasser J. The effect on vertebral bone mass and strength of long term treatment with antiresorptive agents (estrogen and calcitonin), human parathyroid hormone-(1-38), and combination therapy, assessed in aged ovariectomized rats. Endocrinology. 1994;134(5): 2126-2134.

    Article  PubMed  CAS  Google Scholar 

  58. Cheng PT, Chan C, Muller K. Cyclical treatment of osteopenic ovariectomized adult rats with PTH(1-34) and pamidronate. J Bone Miner Res. 1995;10(1):119-126.

    Article  PubMed  CAS  Google Scholar 

  59. Whitfield JF, Morley P, Ross V, Isaacs RJ, Rixon RH. Restoration of severely depleted femoral trabecular bone in ovariectomized rats by parathyroid hormone-(1-34). Calcif Tissue Int. 1995;56(3):227-231.

    Article  PubMed  CAS  Google Scholar 

  60. Sogaard CH, Wronski TJ, McOsker JE, Mosekilde L. The positive effect of parathyroid hormone on femoral neck bone strength in ovariectomized rats is more pronounced than that of estrogen or bisphosphonates. Endocrinology. 1994; 134(2):650-657.

    Article  PubMed  CAS  Google Scholar 

  61. Li M, Wronski TJ. Response of femoral neck to estrogen depletion and parathyroid hormone in aged rats. Bone. 1995;16(5):551-557.

    Article  PubMed  CAS  Google Scholar 

  62. Li M, Liang H, Shen Y, Wronski TJ. Parathyroid hormone stimulates cancellous bone formation at skeletal sites regardless of marrow composition in ovariectomized rats. Bone. 1999;24(2):95-100.

    Article  PubMed  CAS  Google Scholar 

  63. Mashiba T, Tanizawa T, Takano Y, Takahashi HE, Mori S, Norimatsu H. A histomorphometric study on effects of single and concurrent intermittent administration of human PTH (1-34) and bisphosphonate cimadronate on tibial metaphysis in ovariectomized rats. Bone. 1995;17(4 Suppl):273S-278S.

    PubMed  CAS  Google Scholar 

  64. Zhou H, Iida-Klein A, Lu SS, et al. Anabolic action of parathyroid hormone on cortical and cancellous bone differs between axial and appendicular skeletal sites in mice. Bone. 2003;32(5):513-520.

    Article  PubMed  CAS  Google Scholar 

  65. Liu CC, Kalu DN. Human parathyroid hormone-(1-34) prevents bone loss and augments bone formation in sexually mature ovariectomized rats. J Bone Miner Res. 1990;5(9):973-982.

    Article  PubMed  CAS  Google Scholar 

  66. Lane NE, Kimmel DB, Nilsson MH, et al. Bone-selective analogs of human PTH(1-34) increase bone formation in an ovariectomized rat model. J Bone Miner Res. 1996;11(5):614-625.

    Article  PubMed  CAS  Google Scholar 

  67. Miller SC, Hunziker J, Mecham M, Wronski TJ. Intermittent parathyroid hormone administration stimulates bone formation in the mandibles of aged ovariectomized rats. J Dent Res. 1997;76(8):1471-1476.

    Article  PubMed  CAS  Google Scholar 

  68. Nakajima M, Ejiri S, Tanaka M, Toyooka E, Kohno S, Ozawa H. Effect of intermittent administration of human parathyroid hormone (1-34) on the mandibular condyle of ovariectomized rats. J Bone Miner Metab. 2000;18(1):9-17.

    Article  PubMed  CAS  Google Scholar 

  69. Hunziker J, Wronski TJ, Miller SC. Mandibular bone formation rates in aged ovariectomized rats treated with anti-resorptive agents alone and in combination with intermittent parathyroid hormone. J Dent Res. 2000;79(6):1431-1438.

    Article  PubMed  CAS  Google Scholar 

  70. Marques MR, da Silva MA, Manzi FR, Cesar-Neto JB, Nociti FH Jr, Barros SP. Effect of intermittent PTH administration in the periodontitis-associated bone loss in ovariectomized rats. Arch Oral Biol. 2005;50(4):421-429.

    Article  PubMed  CAS  Google Scholar 

  71. Kishi T, Hagino H, Kishimoto H, Nagashima H. Bone responses at various skeletal sites to human parathyroid hormone in ovariectomized rats: effects of long-term administration, withdrawal, and readministration. Bone. 1998;22(5): 515-522.

    Article  PubMed  CAS  Google Scholar 

  72. Shen V, Dempster DW, Mellish RW, Birchman R, Horbert W, Lindsay R. Effects of combined and separate intermittent administration of low-dose human parathyroid hormone fragment (1-34) and 17 beta-estradiol on bone histomorphometry in ovariectomized rats with established osteopenia. Calcif Tissue Int. 1992;50(3):214-220.

    Article  PubMed  CAS  Google Scholar 

  73. Shen V, Dempster DW, Birchman R, Xu R, Lindsay R. Loss of cancellous bone mass and connectivity in ovariectomized rats can be restored by combined treatment with parathyroid hormone and estradiol. J Clin Investig. 1993;91(6):2479-2487.

    Article  PubMed  CAS  Google Scholar 

  74. Wronski TJ, Yen CF, Qi H, Dann LM. Parathyroid hormone is more effective than estrogen or bisphosphonates for restoration of lost bone mass in ovariectomized rats. Endo­crinology. 1993;132(2):823-831.

    Article  PubMed  CAS  Google Scholar 

  75. Wronski TJ, Yen CF. Anabolic effects of parathyroid hormone on cortical bone in ovariectomized rats. Bone. 1994; 15(1):51-58.

    Article  PubMed  CAS  Google Scholar 

  76. Mosekilde L. Assessing bone quality – animal models in preclinical osteoporosis research. Bone. 1995;17(4 Suppl): 343S-352S.

    PubMed  CAS  Google Scholar 

  77. Baumann BD, Wronski TJ. Response of cortical bone to antiresorptive agents and parathyroid hormone in aged ovariectomized rats. Bone. 1995;16(2):247-253.

    Article  PubMed  CAS  Google Scholar 

  78. Wang L, Orhii PB, Banu J, Kalu DN. Effects of separate and combined therapy with growth hormone and parathyroid hormone on lumbar vertebral bone in aged ovariectomized osteopenic rats. Bone. 2001;28(2):202-207.

    Article  PubMed  CAS  Google Scholar 

  79. Banu MJ, Orhii PB, Wang L, Kalu DN. Separate and combined effects of growth hormone and parathyroid hormone on cortical bone osteopenia in ovariectomized aged rats. Aging (Milano). 2001;13(4):282-292.

    CAS  Google Scholar 

  80. Wang L, Orhii PB, Banu J, Kalu DN. Bone anabolic effects of separate and combined therapy with growth hormone and parathyroid hormone on femoral neck in aged ovariectomized osteopenic rats. Mech Ageing Dev. 2001;122(1):89-104.

    Article  PubMed  CAS  Google Scholar 

  81. Mosekilde L, Tornvig L, Thomsen JS, Orhii PB, Banu MJ, Kalu DN. Parathyroid hormone and growth hormone have additive or synergetic effect when used as intervention treatment in ovariectomized rats with established osteopenia. Bone. 2000;26(6):643-651.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang L, Endo N, Yamamoto N, Tanizawa T, Takahashi HE. Effects of single and concurrent intermittent administration of human PTH (1-34) and incadronate on cancellous and cortical bone of femoral neck in ovariectomized rats. Tohoku J Exp Med. 1998;186(2):131-141.

    Article  PubMed  CAS  Google Scholar 

  83. Kostenuik PJ, Capparelli C, Morony S, et al. OPG and PTH-(1-34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology. 2001;142(10):4295-4304.

    Article  PubMed  CAS  Google Scholar 

  84. Wronski TJ, Ratkus AM, Thomsen JS, Vulcan Q, Mosekilde L. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats. J Bone Miner Res. 2001;16(8):1399-1407.

    Article  PubMed  CAS  Google Scholar 

  85. Rhee Y, Won YY, Baek MH, Lim SK. Maintenance of increased bone mass after recombinant human parathyroid hormone (1-84) with sequential zoledronate treatment in ovariectomized rats. J Bone Miner Res. 2004;19(6):931-937.

    Article  PubMed  CAS  Google Scholar 

  86. Ma YL, Bryant HU, Zeng Q, et al. New bone formation with teriparatide [human parathyroid hormone-(1-34)] is not retarded by long-term pretreatment with alendronate, estrogen, or raloxifene in ovariectomized rats. Endocrinology. 2003;144(5):2008-2015.

    Article  PubMed  CAS  Google Scholar 

  87. Eschen C, Andreassen TT. Growth hormone normalizes vertebral strength in ovariectomized rats. Calcif Tissue Int. 1995;57(5):392-396.

    Article  PubMed  CAS  Google Scholar 

  88. Verhaeghe J, van Bree R, Van Herck E, et al. Effects of recombinant human growth hormone and insulin-like growth factor-I, with or without 17 beta-estradiol, on bone and mineral homeostasis of aged ovariectomized rats. J Bone Miner Res. 1996;11(11):1723-1735.

    Article  PubMed  CAS  Google Scholar 

  89. Mosekilde L, Thomsen JS, Orhii PB, Kalu DN. Growth hormone increases vertebral and femoral bone strength in osteopenic, ovariectomized, aged rats in a dose-dependent and site-specific manner. Bone. 1998;23(4):343-352.

    Article  PubMed  CAS  Google Scholar 

  90. Fritton JC, Emerton KB, Sun H, et al. Growth hormone protects against ovariectomy-induced bone loss in states of low circulating IGF-1*. J Bone Miner Res. 2010;25(2):235-246.

    Article  PubMed  CAS  Google Scholar 

  91. Sampath TK, Simic P, Sendak R, et al. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res. 2007;22(6):849-859.

    Article  PubMed  CAS  Google Scholar 

  92. Iwamoto J, Yeh JK, Schmidt A, et al. Raloxifene and vitamin K2 combine to improve the femoral neck strength of ovariectomized rats. Calcif Tissue Int. 2005;77(2):119-126.

    Article  PubMed  CAS  Google Scholar 

  93. Folwarczna J, Sliwinski L, Cegiela U, et al. Raloxifene similarly affects the skeletal system of male and ovariectomized female rats. Pharmacol Rep. 2007;59(3):349-358.

    PubMed  CAS  Google Scholar 

  94. Narayana Murthy PS, Sengupta S, Sharma S, Singh MM. Effect of ormeloxifene on ovariectomy-induced bone resorption, osteoclast differentiation and apoptosis and TGF beta-3 expression. J Steroid Biochem Mol Biol. 2006;100(4-5): 117-128.

    Article  PubMed  CAS  Google Scholar 

  95. Ammann P, Bourrin S, Brunner F, et al. A new selective estrogen receptor modulator HMR-3339 fully corrects bone alterations induced by ovariectomy in adult rats. Bone. 2004;35(1):153-161.

    Article  PubMed  CAS  Google Scholar 

  96. Goss PE, Qi S, Cheung AM, Hu H, Mendes M, Pritzker KP. The selective estrogen receptor modulator SCH 57068 prevents bone loss, reduces serum cholesterol and blocks estrogen-induced uterine hypertrophy in ovariectomized rats. J Steroid Biochem Mol Biol. 2004;92(1–2):79-87.

    Article  PubMed  CAS  Google Scholar 

  97. Ikeno A, Minato H, Kohayakawa C, Tsuji J. Effect of OS-0544, a selective estrogen receptor modulator, on endothelial function and increased sympathetic activity in ovariectomized rats. Vasc Pharmacol. 2009;50(1–2):40-44.

    Article  CAS  Google Scholar 

  98. Iwamoto J, Seki A, Takeda T, Sato Y, Yamada H, Yeh JK. Comparative therapeutic effects of alendronate and alfacalcidol on cancellous and cortical bone mass and mechanical properties in ovariectomized osteopenic rats. J Nutr Sci Vitaminol. 2006;52(1):1-8.

    Article  PubMed  CAS  Google Scholar 

  99. Rodan GA, Seedor JG, Balena R. Preclinical pharmacology of alendronate. Osteoporos Int. 1993;3(Suppl 3):S7-S12.

    Article  PubMed  Google Scholar 

  100. Bonjour JP, Ammann P, Barbier A, Caverzasio J, Rizzoli R. Tiludronate: bone pharmacology and safety. Bone. 1995; 17(5 Suppl):473S-477S.

    Article  PubMed  CAS  Google Scholar 

  101. Russell RG. Ibandronate: pharmacology and preclinical studies. Bone. 2006;38(4 Suppl 1):S7-S12.

    Article  PubMed  CAS  Google Scholar 

  102. Lespessailles E, Jaffre C, Beaupied H, et al. Does exercise modify the effects of zoledronic acid on bone mass, microarchitecture, biomechanics, and turnover in ovariectomized rats? Calcif Tissue Int. 2009;85(2):146-157.

    Article  PubMed  CAS  Google Scholar 

  103. Qu Q, Zheng H, Dahllund J, et al. Selective estrogenic effects of a novel triphenylethylene compound, FC1271a, on bone, cholesterol level, and reproductive tissues in intact and ovariectomized rats. Endocrinology. 2000;141(2):809-820.

    Article  PubMed  CAS  Google Scholar 

  104. Chikazu D, Shindo M, Iwasaka T, et al. A novel synthetic triazolotriazepine derivative JTT-606 inhibits bone resorption by down-regulation of action and production of bone resorptive factors. J Bone Miner Res. 2000;15(4):674-682.

    Article  PubMed  CAS  Google Scholar 

  105. Nich C, Marchadier A, Sedel L, Petite H, Vidal C, Hamadouche M. Decrease in particle-induced osteolysis in ovariectomized mice. J Orthop Res. 2010;28(2):178-183.

    PubMed  Google Scholar 

  106. Caverzasio J, Higgins L, Ammann P. Prevention of trabecular bone loss induced by estrogen deficiency by a selective p38alpha inhibitor. J Bone Miner Res. 2008;23(9):1389-1397.

    Article  PubMed  CAS  Google Scholar 

  107. Strait K, Li Y, Dillehay DL, Weitzmann MN. Suppression of NF-kappaB activation blocks osteoclastic bone resorption during estrogen deficiency. Int J Mol Med. 2008; 21(4):521-525.

    PubMed  CAS  Google Scholar 

  108. Kasukawa Y, Miyakoshi N, Srivastava AK, et al. The selective cyclooxygenase-2 inhibitor celecoxib reduces bone resorption, but not bone formation, in ovariectomized mice in vivo. Tohoku J Exp Med. 2007;211(3):275-283.

    Article  PubMed  CAS  Google Scholar 

  109. Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T. Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J Bone Miner Res. 2000;15(3):541-549.

    Article  PubMed  CAS  Google Scholar 

  110. Arai C, Kohguchi M, Akamatsu S, et al. Trehalose suppresses lipopolysaccharide-induced osteoclastogenesis bone marrow in mice. Nutr Res (New York, NY). 2001; 21(7):993-999.

    Article  CAS  Google Scholar 

  111. Yamaza T, Miura Y, Bi Y, et al. Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS ONE. 2008;3(7):e2615.

    Article  PubMed  CAS  Google Scholar 

  112. Sasaki T, Ohyori N, Debari K, Ramamurthy NS, Golub LM. Effects of chemically modified tetracycline, CMT-8, on bone loss and osteoclast structure and function in osteoporotic states. Ann NY Acad Sci. 1999;878:347-360.

    Article  PubMed  CAS  Google Scholar 

  113. Xiang A, Kanematsu M, Kumar S, et al. Changes in micro-CT 3D bone parameters reflect effects of a potent cathepsin K inhibitor (SB-553484) on bone resorption and cortical bone formation in ovariectomized mice. Bone. 2007; 40(5):1231-1237.

    Article  PubMed  CAS  Google Scholar 

  114. Simic P, Culej JB, Orlic I, et al. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem. 2006;281(35): 25509-25521.

    Article  PubMed  CAS  Google Scholar 

  115. Kim D, Cho SW, Her SJ, et al. Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice. Stem Cells. 2006;24(7):1798-1805.

    Article  PubMed  CAS  Google Scholar 

  116. Dunstan CR, Boyce R, Boyce BF, et al. Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J Bone Miner Res. 1999;14(6):953-959.

    Article  PubMed  CAS  Google Scholar 

  117. Yao W, Balooch G, Balooch M, et al. Sequential treatment of ovariectomized mice with bFGF and risedronate restored trabecular bone microarchitecture and mineralization. Bone. 2006;39(3):460-469.

    Article  PubMed  CAS  Google Scholar 

  118. Pierroz DD, Bouxsein ML, Rizzoli R, Ferrari SL. Combined treatment with a beta-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone. 2006;39(2):260-267.

    Article  PubMed  CAS  Google Scholar 

  119. Waki Y, Horita T, Miyamoto K, Ohya K, Kasugai S. Effects of XT-44, a phosphodiesterase 4 inhibitor, in osteoblastgenesis and osteoclastgenesis in culture and its therapeutic effects in rat osteopenia models. Jpn J Pharmacol. 1999;79(4):477-483.

    Article  PubMed  CAS  Google Scholar 

  120. Cho SW, Sun HJ, Yang JY, et al. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther. 2009;17(11):1979-1987.

    Article  PubMed  CAS  Google Scholar 

  121. Zhao Y, Zou B, Shi Z, Wu Q, Chen GQ. The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials. 2007;28(20):3063-3073.

    Article  PubMed  CAS  Google Scholar 

  122. Kostenuik PJ, Bolon B, Morony S, et al. Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone. 2004;34(4):656-664.

    Article  PubMed  CAS  Google Scholar 

  123. Shimizu-Ishiura M, Kawana F, Sasaki T. Osteoprotegerin administration reduces femural bone loss in ovariectomized mice via impairment of osteoclast structure and function. J Electron Microsc. 2002;51(5):315-325.

    Article  CAS  Google Scholar 

  124. Nielsen KL, Allen MR, Bloomfield SA, et al. Biglycan deficiency interferes with ovariectomy-induced bone loss. J Bone Miner Res. 2003;18(12):2152-2158.

    Article  PubMed  CAS  Google Scholar 

  125. Shahnazari M, Martin BR, Legette LL, Lachcik PJ, Welch J, Weaver CM. Diet calcium level but not calcium supplement particle size affects bone density and mechanical properties in ovariectomized rats. J Nutr. 2009;139(7):1308-1314.

    Article  PubMed  CAS  Google Scholar 

  126. Hirasawa T, Omi N, Ezawa I. Effect of 1alpha-hydroxyvitamin D3 and egg-shell calcium on bone metabolism in ovariectomized osteoporotic model rats. J Bone Miner Metab. 2001;19(2):84-88.

    Article  PubMed  CAS  Google Scholar 

  127. Omi N, Morikawa N, Ezawa I. The effect of voluntary exercise on bone mineral density and skeletal muscles in the rat model at ovariectomized and sham stages. Bone Miner. 1994;24(3):211-222.

    Article  PubMed  CAS  Google Scholar 

  128. Chen CC, Liu MH, Wang MF, Chen CC. Effects of aging and dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized SAMP8 mice. Chin J Physiol. 2007;50(6):308-314.

    PubMed  CAS  Google Scholar 

  129. Reddy PN, Lakshmana M, Udupa UV. Effect of Praval bhasma (Coral calx), a natural source of rich calcium on bone mineralization in rats. Pharmacol Res. 2003;48(6):593-599.

    Article  PubMed  Google Scholar 

  130. Scholz-Ahrens KE, Acil Y, Schrezenmeir J. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats*. Br J Nutr. 2002;88(4):365-377.

    Article  PubMed  CAS  Google Scholar 

  131. Wronski TJ, Yen CF, Burton KW, et al. Skeletal effects of calcitonin in ovariectomized rats. Endocrinology. 1991; 129(4):2246-2250.

    Article  PubMed  CAS  Google Scholar 

  132. Shen Y, Li M, Wronski TJ. Skeletal effects of calcitonin treatment and withdrawal in ovariectomized rats. Calcif Tissue Int. 1996;58(4):263-267.

    PubMed  CAS  Google Scholar 

  133. Nitta T, Hoshino T, Koida M, Nakamuta H. Histomor­phometrical evaluation of anti-osteopenic effect of nasal salmon calcitonin in a type 1 osteoporotic model of rats. Biol Pharm Bull. 1996;19(2):214-216.

    PubMed  CAS  Google Scholar 

  134. Sakai A, Nishida S, Nishida S, et al. 1alpha-Hydroxyvitamin D3 suppresses trabecular bone resorption by inhibiting osteoclastogenic potential in bone marrow cells after ovariectomy in mice. J Bone Miner Metab. 2001;19(5):277-286.

    Article  PubMed  CAS  Google Scholar 

  135. Shibata T, Shira-Ishi A, Sato T, et al. Vitamin D hormone inhibits osteoclastogenesis in vivo by decreasing the pool of osteoclast precursors in bone marrow. J Bone Miner Res. 2002;17(4):622-629.

    Article  PubMed  CAS  Google Scholar 

  136. Asawa Y, Amizuka N, Hara K, et al. Histochemical evaluation for the biological effect of menatetrenone on metaphyseal trabeculae of ovariectomized rats. Bone. 2004;35(4): 870-880.

    Article  PubMed  CAS  Google Scholar 

  137. Matsumoto Y, Mikuni-Takagaki Y, Kozai Y, et al. Prior treatment with vitamin K(2) significantly improves the efficacy of risedronate. Osteoporos Int. 2009;20(11):1863-1872.

    Article  PubMed  CAS  Google Scholar 

  138. Shevde NK, Plum LA, Clagett-Dame M, Yamamoto H, Pike JW, DeLuca HF. A potent analog of 1alpha, 25-­dihydroxyvitamin D3 selectively induces bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487-13491.

    Article  PubMed  CAS  Google Scholar 

  139. Arjmandi BH, Alekel L, Hollis BW, et al. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr. 1996;126(1):161-167.

    PubMed  CAS  Google Scholar 

  140. Omi N, Aoi S, Murata K, Ezawa I. Evaluation of the effect of soybean milk and soybean milk peptide on bone metabolism in the rat model with ovariectomized osteoporosis. J Nutr Sci Vitaminol. 1994;40(2):201-211.

    PubMed  CAS  Google Scholar 

  141. Kim DW, Yoo KY, Lee YB, et al. Soy isoflavones mitigate long-term femoral and lumbar vertebral bone loss in middle-aged ovariectomized mice. J Med Food. 2009;12(3):536-541.

    Article  PubMed  CAS  Google Scholar 

  142. Devareddy L, Khalil DA, Korlagunta K, Hooshmand S, Bellmer DD, Arjmandi BH. The effects of fructo-­oligosaccharides in combination with soy protein on bone in osteopenic ovariectomized rats (New York, NY). Menopause. 2006;13(4):692-699.

    Article  PubMed  Google Scholar 

  143. Johnson CD, Lucas EA, Hooshmand S, Campbell S, Akhter MP, Arjmandi BH. Addition of fructooligosaccharides and dried plum to soy-based diets reverses bone loss in the ovariectomized rat. Evid Based Complement Altern Med. 2008 PMID: 18955356.

    Google Scholar 

  144. Pie JE, Park JH, Park YH, et al. Effect of genistein on the expression of bone metabolism genes in ovariectomized mice using a cDNA microarray. J Nutr Biochem. 2006; 17(3):157-164.

    Article  PubMed  CAS  Google Scholar 

  145. Erlandsson MC, Islander U, Moverare S, Ohlsson C, Carlsten H. Estrogenic agonism and antagonism of the soy isoflavone genistein in uterus, bone and lymphopoiesis in mice. APMIS. 2005;113(5):317-323.

    Article  PubMed  CAS  Google Scholar 

  146. Ishimi Y, Arai N, Wang X, et al. Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun. 2000;274(3):697-701.

    Article  PubMed  CAS  Google Scholar 

  147. Ishimi Y, Miyaura C, Ohmura M, et al. Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology. 1999;140(4):1893-1900.

    Article  PubMed  CAS  Google Scholar 

  148. Li B, Yu S. Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biol Pharm Bull. 2003;26(6):780-786.

    Article  PubMed  CAS  Google Scholar 

  149. Ohtomo T, Uehara M, Penalvo JL, et al. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. Eur J Nutr. 2008;47(5):273-279.

    Article  PubMed  CAS  Google Scholar 

  150. Fonseca D, Ward WE. Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone. 2004;35(2):489-497.

    Article  PubMed  CAS  Google Scholar 

  151. Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab. 2003;21(5):268-275.

    Article  PubMed  CAS  Google Scholar 

  152. Ohta A, Uehara M, Sakai K, et al. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr. 2002;132(7):2048-2054.

    PubMed  CAS  Google Scholar 

  153. Tsuji M, Yamamoto H, Sato T, et al. Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J Bone Miner Metab. 2009;27(6):673-681.

    Article  PubMed  CAS  Google Scholar 

  154. Chiba H, Uehara M, Wu J, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133(6):1892-1897.

    PubMed  CAS  Google Scholar 

  155. Zhang G, Qin L, Hung WY, et al. Flavonoids derived from herbal Epimedium Brevicornum Maxim prevent OVX-induced osteoporosis in rats independent of its enhancement in intestinal calcium absorption. Bone. 2006;38(6): 818-825.

    Article  PubMed  CAS  Google Scholar 

  156. Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res. 2003;18(7):1206-1216.

    Article  PubMed  CAS  Google Scholar 

  157. Fernandes G, Lawrence R, Sun D. Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot Essent Fatty Acids. 2003;68(6):361-372.

    Article  PubMed  CAS  Google Scholar 

  158. Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med. 2009;13(8B):1833-1844.

    Article  PubMed  Google Scholar 

  159. Kelly O, Cashman KD. The effect of conjugated linoleic acid on calcium absorption and bone metabolism and composition in adult ovariectomised rats. Prostaglandins Leukot Essent Fatty Acids. 2004;71(5):295-301.

    Article  PubMed  CAS  Google Scholar 

  160. Sibonga JD, Lotinun S, Evans GL, Pribluda VS, Green SJ, Turner RT. Dose-response effects of 2-methoxyestradiol on estrogen target tissues in the ovariectomized rat. Endocri­nology. 2003;144(3):785-792.

    Article  PubMed  CAS  Google Scholar 

  161. Han SY, Lee JR, Kwon YK, et al. Ostreae testa prevent ovariectomy-induced bone loss in mice by osteoblast activations. J Ethnopharmacol. 2007;114(3):400-405.

    Article  PubMed  Google Scholar 

  162. Li JX, Liu J, He CC, et al. Triterpenoids from Cimicifugae rhizoma, a novel class of inhibitors on bone resorption and ovariectomy-induced bone loss. Maturitas. 2007;58(1):59-69.

    Article  PubMed  CAS  Google Scholar 

  163. Ohtani J, Hernandez RA, Sunagawa H, et al. A newly developed snack effective for enhancing bone volume. Nutr J. 2009;8:30.

    Article  PubMed  CAS  Google Scholar 

  164. Yin J, Tezuka Y, Kouda K, et al. In vivo antiosteoporotic activity of a fraction of Dioscorea spongiosa and its constituent, 22-O-methylprotodioscin. Planta Med. 2004; 70(3):220-226.

    Article  PubMed  CAS  Google Scholar 

  165. Devareddy L, Hooshmand S, Collins JK, Lucas EA, Chai SC, Arjmandi BH. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J Nutr Biochem. 2008;19(10):694-699.

    Article  PubMed  CAS  Google Scholar 

  166. Murakami A, Song M, Katsumata S, Uehara M, Suzuki K, Ohigashi H. Citrus nobiletin suppresses bone loss in ovariectomized ddY mice and collagen-induced arthritis in DBA/1 J mice: possible involvement of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis regulation. BioFactors. 2007;30(3):179-192.

    Article  PubMed  CAS  Google Scholar 

  167. Li H, Li J, Prasain JK, et al. Antiosteoporotic activity of the stems of Sambucus sieboldiana. Biol Pharm Bull. 1998; 21(6):594-598.

    PubMed  CAS  Google Scholar 

  168. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC. Effects of two non-endurance exercise protocols on established bone loss in ovariectomized adult rats. Calcif Tissue Int. 1993;52(3):239-243.

    Article  PubMed  CAS  Google Scholar 

  169. Iwamoto J, Takeda T, Sato Y. Effect of treadmill exercise on bone mass in female rats. Exp Anim. 2005;54(1):1-6.

    PubMed  CAS  Google Scholar 

  170. Simoes PA, Zamarioli A, Bloes P, et al. Effect of treadmill exercise on lumbar vertebrae in ovariectomized rats: anthropometrical and mechanical analyses. Acta Bioeng Biomech. 2008;10(2):39-41.

    PubMed  CAS  Google Scholar 

  171. Peng ZQ, Vaananen HK, Tuukkanen J. Ovariectomy-induced bone loss can be affected by different intensities of treadmill running exercise in rats. Calcif Tissue Int. 1997;60(5):441-448.

    Article  PubMed  CAS  Google Scholar 

  172. Sehmisch S, Galal R, Kolios L, et al. Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int. 2009;20(12):1999-2008.

    Article  PubMed  CAS  Google Scholar 

  173. Sakakura Y, Shide N, Tsuruga E, Irie K, Yajima T. Effects of running exercise on the mandible and tibia of ovariectomized rats. J Bone Miner Metab. 2001;19(3):159-167.

    Article  PubMed  CAS  Google Scholar 

  174. Notomi T, Okimoto N, Okazaki Y, Nakamura T, Suzuki M. Tower climbing exercise started 3 months after ­ovariectomy recovers bone strength of the femur and lumbar vertebrae in aged osteopenic rats. J Bone Miner Res. 2003;18(1):140-149.

    Article  PubMed  Google Scholar 

  175. Honda A, Sogo N, Nagasawa S, Shimizu T, Umemura Y. High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. J Appl Physiol. 2003;95(3):1032-1037.

    PubMed  Google Scholar 

  176. Yeh JK, Aloia JF, Barilla ML. Effects of 17 beta-estradiol replacement and treadmill exercise on vertebral and ­femoral bones of the ovariectomized rat. Bone Miner. 1994;24(3):223-234.

    Article  PubMed  CAS  Google Scholar 

  177. Barengolts EI, Lathon PV, Curry DJ, Kukreja SC. Effects of endurance exercise on bone histomorphometric parameters in intact and ovariectomized rats. Bone Miner. 1994;26(2):133-140.

    Article  PubMed  CAS  Google Scholar 

  178. Yeh JK, Aloia JF, Chen MM, Tierney JM, Sprintz S. Influence of exercise on cancellous bone of the aged female rat. J Bone Miner Res. 1993;8(9):1117-1125.

    Article  PubMed  CAS  Google Scholar 

  179. Yeh JK, Liu CC, Aloia JF. Additive effect of treadmill exercise and 17 beta-estradiol replacement on prevention of tibial bone loss in adult ovariectomized rat. J Bone Miner Res. 1993;8(6):677-683.

    Article  PubMed  CAS  Google Scholar 

  180. Li CY, Jee WS, Chen JL, et al. Estrogen and “exercise” have a synergistic effect in preventing bone loss in the lumbar vertebra and femoral neck of the ovariectomized rat. Calcif Tissue Int. 2003;72(1):42-49.

    Article  PubMed  CAS  Google Scholar 

  181. Yamamoto N, Takahashi HE, Tanizawa T, Fujimoto R, Hara T, Tanaka S. Maintenance of bone mass by physical exercise after discontinuation of intermittent hPTH(1-34) administration. Bone Miner. 1993;23(3):333-342.

    Article  PubMed  CAS  Google Scholar 

  182. Mo A, Yao W, Li C, et al. Bipedal stance exercise and prostaglandin E2 (PGE2) and its synergistic effect in increasing bone mass and in lowering the PGE2 dose required to prevent ovariectomized-induced cancellous bone loss in aged rats. Bone. 2002;31(3):402-406.

    Article  PubMed  CAS  Google Scholar 

  183. Shiguemoto GE, Rossi EA, Baldissera V, Gouveia CH, de Valdez Vargas GM, Andrade Perez SE. Isoflavone-supplemented soy yoghurt associated with resistive physical exercise increase bone mineral density of ovariectomized rats. Maturitas. 2007;57(3):261-270.

    Article  PubMed  CAS  Google Scholar 

  184. Liu K, Ma G, Lv G, et al. Effects of soybean isoflavone dosage and exercise on the serum markers of bone metabolism in ovariectomized rats. Asia Pac J Clin Nutr. 2007;16(Suppl 1):193-195.

    PubMed  Google Scholar 

  185. Hertrampf T, Gruca MJ, Seibel J, Laudenbach U, Fritzemeier KH, Diel P. The bone-protective effect of the phytoestrogen genistein is mediated via ER alpha-dependent mechanisms and strongly enhanced by physical activity. Bone. 2007;40(6):1529-1535.

    Article  PubMed  CAS  Google Scholar 

  186. Wu J, Wang XX, Takasaki M, Ohta A, Higuchi M, Ishimi Y. Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res. 2001;16(10):1829-1836.

    Article  PubMed  CAS  Google Scholar 

  187. Wu J, Wang X, Chiba H, et al. Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metabolism. 2004;53(7):942-948.

    Article  PubMed  CAS  Google Scholar 

  188. Bonnet N, Beaupied H, Vico L, et al. Combined effects of exercise and propranolol on bone tissue in ovariectomized rats. J Bone Miner Res. 2007;22(4):578-588.

    Article  PubMed  CAS  Google Scholar 

  189. Fuchs RK, Shea M, Durski SL, Winters-Stone KM, Widrick J, Snow CM. Individual and combined effects of exercise and alendronate on bone mass and strength in ovariectomized rats. Bone. 2007;41(2):290-296.

    Article  PubMed  CAS  Google Scholar 

  190. Widrick JJ, Fuchs R, Maddalozzo GF, Marley K, Snow C. Relative effects of exercise training and alendronate treatment on skeletal muscle function of ovariectomized rats. Menopause. 2007;14(3 Pt 1):528-534.

    Article  PubMed  Google Scholar 

  191. Gala J, Diaz-Curiel M, de la Piedra C, Calero J. Short- and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats. Br J Nutr. 2001;86(4):521-527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameela Banu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Banu, J. (2011). The Ovariectomized Mice and Rats. In: Duque, G., Watanabe, K. (eds) Osteoporosis Research. Springer, London. https://doi.org/10.1007/978-0-85729-293-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-293-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-292-6

  • Online ISBN: 978-0-85729-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics