Skip to main content

Abstract

This chapter presents an introduction to Structural Health Monitoring (SHM), by defining the terminology, summarizing the most common techniques, and identifying outstanding research issues. The essential components of an SHM system are also outlined to highlight the important role of numerical simulations in SHM, which is the fundamental theme of this book. The chapter ends with a summary of the organization and contents of the book in order to guide the readers through its various parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alleyne D, Cawley P (1991) A Two-dimensional Fourier transform method for the measurement of propagating multimode signals. J Acoust Soc Am 89:115968

    Article  Google Scholar 

  2. Anderson JD (1995) Computational fluid dynamics: basics with applications. McGraw Hill, New York

    Google Scholar 

  3. Anderson G (2006) Providing best value IVHM solutions for aging aircraft. In: 9th joint FAA/DOD/NASA conference on aging aircraft, Atlanta, USA

    Google Scholar 

  4. Basri R, Chiu WK (2004) Numerical analysis on the interaction of guided lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Compos Struct 66:8799

    Article  Google Scholar 

  5. Bathe KJ (1997) Finite element procedures. Printice Hall, Englewood Cliffs

    Google Scholar 

  6. Becker AA (1990) Boundary element method. Mcgraw Hill, New York

    Google Scholar 

  7. Beskos DE, Narayanan GV (1983) Dynamic response of frameworks by numerical laplace transform. Comput Methods Appl Mech Eng 37:289á¾¢307

    Article  MATH  Google Scholar 

  8. Cantrell JH, Yost WT (2001) Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue 23(1):487á¾¢490

    Article  Google Scholar 

  9. Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  10. Doebling SW, Farrar C, Prime MB, Daniel WS (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. LA-13070-MS, May

    Google Scholar 

  11. Doyle JF (1997) Wave propagation in structures. Springer, New York

    Book  MATH  Google Scholar 

  12. Evans MJ, Cawley P (1999) Measurement and prediction of diffuse fields in structures. J Acoust Soc Am 106:3348á¾¢3360

    Article  Google Scholar 

  13. Farrar C, James G (1987) System identification from ambient vibration measurements on a bridge. J Sound Vib 205:118

    Google Scholar 

  14. Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell Mater Syst Struct 16(4):291305

    Article  Google Scholar 

  15. Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Academic Press, New York

    Google Scholar 

  16. Giurgiutiu V, Bao J, Zhao W (2003) Piezoelectric wafer active sensor embedded ultrasonics in beams and plates. Exp Mech 43(4):428449

    Article  Google Scholar 

  17. Gopalakrishnan S (2009) Modeling aspects in finite elements for structural health monitoring, encyclopedia on structural health monitoring, vol 2. Wiley, Chichester, pp 811á¾¢831, Chap. 43

    Google Scholar 

  18. Gopalakrishnan S, Chakraborty A, Roy Mahapatra D (2008) Spectral finite element method. Springer, London

    MATH  Google Scholar 

  19. Ihn J-B, Chang FK (2003) Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics, 2004. Smart Mater Struct 13:609620

    Google Scholar 

  20. Kim JY, Jacobs LJ, Qu J, Littles JW (2006) Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J Acoust Soc Am 120(3):1266á¾¢1273

    Article  Google Scholar 

  21. Krezig E (1992) Advanced engineering mathematics, 9th edn. McGraw Hill, New York

    Google Scholar 

  22. Langley RS (2007) On the diffuse field reciprocity relationship and vibrational energy variance in a random subsystem at high frequencies. J Acoust Soc Am 121:913921

    Google Scholar 

  23. Lanza Di Scalea F, Salamone S (2008) Temperature effects in ultrasonic lamb wave structural health monitoring systems. J Acoust Soc Am 124(1):161á¾¢174

    Article  Google Scholar 

  24. Larose E, Roux P, Campillo M, Derode A (2008) Fluctuations of correlations and greens function reconstruction: role of scattering. Am Inst Phys 103:114907-1

    Google Scholar 

  25. Lee JW, Kim JD, Yun CB, Yi JH, Shim JM (2002) Health-monitoring method for bridges under ordinary traffic loadings. J Sound Vib 257(2):247á¾¢264

    Article  Google Scholar 

  26. de Luis J, Crawley EF (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:13731385

    Google Scholar 

  27. Master ZM, Michaels TE, Michaels JE (2007) Incident wave removal for defect enhancement in acoustic wavefield imaging. In: AIP conference Proceedings vol 894, pp 665á¾¢672

    Google Scholar 

  28. Michaels TE, Michaels JE, Mi B, Ruzzene M (2005) Damage detection in plate structures using sparse transducer arrays and acoustic wavefield imaging. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, AIP 24A, 2005

    Google Scholar 

  29. Mustapha F, Manson G, Worden K, Pierce SG (2006) Damage location in an isotropic plate using a vector of novelty indices. Mech Syst Signal Process 21:18851906

    Google Scholar 

  30. Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36:375á¾¢381

    Article  Google Scholar 

  31. Oseguda R, Kreinovich V, Nazarian S, Roldan E (2003) Detection of cracks at rivet holes in thin plates using Lamb wave scanning. Proc SPIE 5047:55á¾¢66

    Article  Google Scholar 

  32. Prasad MS et al (2003) Imaging of defects in composite structures using guided ultrasonics. Proc SPIE 5062:700á¾¢703

    Article  Google Scholar 

  33. Prasad SM, Balasubramaniam K, Krishnamurthy CV (2004) Structural health monitoring of composite structures using lamb wave tomography. Smart Mater Struct 13:7379

    Article  Google Scholar 

  34. Prosser WH, Seale MD, Smith BT (1999) Time-frequency analysis of the dispersion of lamb modes. J Acoust Soc Am 105(5):26692676

    Article  Google Scholar 

  35. Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducers modeling for guided wave based structural health monitoring. Smart Mater Struct 14:4481461

    Article  Google Scholar 

  36. Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vib Dig 39(2):91114

    Article  Google Scholar 

  37. Raghavan A, Cesnik CES (2007) Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring. Smart Mater Struct 16(2):355366

    Article  Google Scholar 

  38. Randall BR (2004) State of the art in monitoring rotating machinerypart 1. J Sound Vib 38:1421

    Google Scholar 

  39. Randall BR (2004) State of the art in monitoring rotating machinerypart 2. J Sound Vib 38:1017

    Google Scholar 

  40. Reddy JN (1985) Finite element method. McGraw Hill, New York

    Google Scholar 

  41. Rizzo P, Bartoli I, Marzani A, Lanzadi Scalea F (2005) Defect classification in pipes by neural network using multiple guided ultrasonic wave features extracted after wavelet processing. Trans ASME J Press Vessel Technol 127:294303

    Google Scholar 

  42. Rose JL (2002) A baseline and vision of ultrasonic guided wave inspection potential. J Press Vessel Technol 124:273á¾¢282

    Article  Google Scholar 

  43. Roux P, Sabra KG, Kuperman W, Roux A (2005) Ambient noise cross correlation in free space: theoretical approach. J Acoust Soc Am 117:79á¾¢84

    Article  Google Scholar 

  44. Ruzzene M (2007) Frequency/wavenumber filtering for improved damage visualization. Smart Mater Struct 16:21162129

    Article  Google Scholar 

  45. Sabra KG, Roux P, Kuperman WA (2005) Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide. J Acoust Soc Am 117:164á¾¢174

    Article  Google Scholar 

  46. Sabra KG, Winkel ES, Bourgoyne DA, Elbing BR, Ceccio SL, Perlin M, Dowling DR (2007) Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring. J Acoust Soc Am 121:19872005

    Article  Google Scholar 

  47. Sabra KG, Srivastava A, Lanzadi Scalea F, Bartoli I, Rizzo P, Conti S (2008) Structural health monitoring by extraction of coherent guided waves from diffuse fields. J Acoust Soc Am 123:EL8á¾¢EL13

    Article  Google Scholar 

  48. Salvino L, Purekar A, Pines DJ (2005) Health monitoring of 2-D plates using EMD and hilbert phase. In: Proceedings of the 4th international workshop on structural health monitoring, Stanford University, CA

    Google Scholar 

  49. Shapiro NM, Campillo M, Stehly L, Ritzwoller M (2005) High resolution surface-wave tomography from ambient seismic noise. Science 29:1615á¾¢1617

    Article  Google Scholar 

  50. Sharma V, Ruzzene M, Hanagud S (2006) Damage index estimation in beams and plates using laser vibrometry. AIAA J 44:919923

    Article  Google Scholar 

  51. Sohn H, Farrar CR, Hemez FM, Czarnecki JJ, Shunk DD, Stinemates DW, Nadler BR (2003) A review of structural health monitoring literature: 19962001. Los Alamos National Laboratory Report, LA-13976-MS

    Google Scholar 

  52. Staszewski WJ, Boller C, Tomlinson G (2004) Health monitoring of aerospace structures. Smart sensors and signal processing. Wiley, Chichester

    Google Scholar 

  53. Staszewski WJ, Lee BC, Mallet L, Scarpa F (2004) Structural health monitoring using laser vibrometry. Part I and II. Smart Mater Struct 13:251269

    Article  Google Scholar 

  54. Su Z, Ye L (2004) An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network. Smart Mater Struct 13(4):957969

    Article  Google Scholar 

  55. Varadan VK, Vinoy KJ, Gopalakrishnan S (2006) Smart material systems and MEMS. Wiley, Chichester

    Book  Google Scholar 

  56. Viktorov IA (1967) Rayleigh and lamb waves. Plenum, New York

    Google Scholar 

  57. Weaver RL (1982) On diffuse waves in solid media. J Acoust Soc Am 71:1608á¾¢1609

    Article  Google Scholar 

  58. Weaver RL (1984) Diffuse waves in finite plates. J Sound Vib 94:319335

    Article  Google Scholar 

  59. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87:134301

    Article  Google Scholar 

  60. Worden K, Dulieu-Barton JM (2004) An overview of intelligent fault detection in systems and structures. Int J Struct Health Monit 3:8598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Gopalakrishnan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gopalakrishnan, S., Ruzzene, M., Hanagud, S. (2011). Introduction. In: Computational Techniques for Structural Health Monitoring. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-284-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-284-1_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-283-4

  • Online ISBN: 978-0-85729-284-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics