Skip to main content

Immunological Aspects of Face Transplantation

  • Chapter
  • First Online:
The Know-How of Face Transplantation

Abstract

Human facial transplantation is a form of composite tissue allotransplantation (CTA), and since November 2005, it has become a clinical reality. Face transplantation is still considered an experimental procedure in the clinic, and to date, 13 facial transplantations have been performed worldwide. We observe the progress in composite facial tissue allotransplantation, partial or full facial transplantation for severely disfigured patients. Facial CTA involves the transplantation of different type of tissues carrying different functions and immunologic characteristics. Immunogenicity of tissue components of the facial allograft and immunosuppressive strategies that reduce allogenic responses against the graft are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cell

ATG:

anti-thymocyte immunoglobulin

CsA:

cyclosporine A

CTA:

composite tissue allotransplantation

CTLA:

cytotoxic T lymphocyte–associated antigen

DDC:

dermal dendritic cell

GVHD:

graft vs. host disease

ICAM:

intercellular adhesion molecule

IRHCTT:

The International Registry on Hand and Composite Tissue Transplantation

LC:

Langerhans cell

LFA:

leukocyte function–associated antigen

mAb:

monoclonal antibody

MHC:

major histocompatibility complex

MMF:

mycophenolate mofetil

NHP:

non-human primates

PTLD:

post-transplant lymphoproliferative disorder

RAPA:

rapamycin

SALT:

skin-associated lymphoid tissue

References

  1. Devauchelle B, Badet L, Lengele B, et al. First human face allograft: early report. Lancet. 2006;368:203-209.

    Article  PubMed  Google Scholar 

  2. Dubernard JM, Lengele B, Morelon E, et al. Outcomes 18 months after the first human partial face transplantation. N Engl J Med. 2007;357:2451-2460.

    Article  CAS  PubMed  Google Scholar 

  3. Guo S, Han Y, Zhang X, et al. Human facial allotransplantation: a 2-year follow-up study. Lancet. 2008;372:631-638.

    Article  PubMed  Google Scholar 

  4. Lantieri L, Meningaud JP, Grimbert P, et al. Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study. Lancet. 2008;372:639-645.

    Article  PubMed  Google Scholar 

  5. Siemionow M, Papay F, Alam D, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet. 2009;374:203-209.

    Article  PubMed  Google Scholar 

  6. Pomahac B, Lengele B, Ridgway EB, et al. Vascular considerations in composite midfacial allotransplantation. Plast Reconstr Surg. 2010;125:517-522.

    Article  CAS  PubMed  Google Scholar 

  7. Siemionow M, Sonmez E. Face as an organ. Ann Plast Surg. 2008;61:345-352.

    Article  CAS  PubMed  Google Scholar 

  8. Klimczak A, Siemionow M. Immunology of tissue transplantation. In: Siemionow M, Eisenmann-Klein M, eds. Plastic and Reconstructive Surgery. London: Springer; 2010.

    Google Scholar 

  9. Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immunol Today. 1993;14:75-78.

    Article  CAS  PubMed  Google Scholar 

  10. Bos JD. Skin Immune System (SIS). 2nd ed. Boca Raton, New York: CRC; 1997.

    Google Scholar 

  11. Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol Res. 2006;36:127-136.

    Article  CAS  PubMed  Google Scholar 

  12. Mutyambizi K, Berger CL, Edelson RL. The balance between immunity and tolerance: the role of Langerhans cells. Cell Mol Life Sci. 2009;66:831-840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rulifson IC, Szot GL, Palmer E, Bluestone JA. Inability to induce tolerance through direct antigen presentation. Am J Transplant. 2002;2:510-519.

    Article  CAS  PubMed  Google Scholar 

  14. Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsenberg ML. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol. 1987;88:569-573.

    Article  CAS  PubMed  Google Scholar 

  15. Grone A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002;88:1-12.

    Article  CAS  PubMed  Google Scholar 

  16. Black AP, Ardern-Jones MR, Kasprowicz V, et al. Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells. Eur J Immunol. 2007;37:1485-1493.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Dong Y, Sun JZ, et al. Donor lymphoid organs are a major site of alloreactive T-cell priming following intestinal transplantation. Am J Transplant. 2006;6:2563-2571.

    Article  CAS  PubMed  Google Scholar 

  18. Henri S, Siret C, Machy P, Kissenpfennig A, Malissen B, Leserman L. Mature DC from skin and skin-draining LN retain the ability to acquire and efficiently present targeted antigen. Eur J Immunol. 2007;37:1184-1193.

    Article  CAS  PubMed  Google Scholar 

  19. Nagaraju K, Raben N, Merritt G, Loeffler L, Kirk K, Plotz P. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clin Exp Immunol. 1998;113:407-414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiendl H, Hohlfeld R, Kieseier BC. Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol. 2005;26:373-380.

    Article  CAS  PubMed  Google Scholar 

  21. Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N. HLA-G: a shield against inflammatory aggression. Trends Immunol. 2001;22:553-555.

    Article  CAS  PubMed  Google Scholar 

  22. Wiendl H, Hohlfeld R, Kieseier BC. Muscle-derived positive and negative regulators of the immune response. Curr Opin Rheumatol. 2005;17:714-719.

    Article  CAS  PubMed  Google Scholar 

  23. Grant GA, Goodkin R, Kliot M. Evaluation and surgical management of peripheral nerve problems. Neurosurgery. 1999;44:825-839. Discussion 39-40.

    Article  CAS  PubMed  Google Scholar 

  24. Constable AL, Armati PJ, Toyka KV, Hartung HP. Production of prostanoids by Lewis rat Schwann cells in vitro. Brain Res. 1994;635:75-80.

    Article  CAS  PubMed  Google Scholar 

  25. Armati PJ, Pollard JD, Gatenby P. Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve. 1990;13:106-116.

    Article  CAS  PubMed  Google Scholar 

  26. Wohlleben G, Hartung HP, Gold R. Humoral and cellular immune functions of cytokine-treated Schwann cells. Adv Exp Med Biol. 1999;468:151-156.

    Article  CAS  PubMed  Google Scholar 

  27. Meyer zu Horste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve. 2008;37:3-13.

    Article  PubMed  CAS  Google Scholar 

  28. Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR. Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci. 2006;23:617-626.

    Article  PubMed  Google Scholar 

  29. Kieseier BC, Hartung HP, Wiendl H. Immune circuitry in the peripheral nervous system. Curr Opin Neurol. 2006;19:437-445.

    Article  CAS  PubMed  Google Scholar 

  30. Kiefer R, Kieseier BC, Stoll G, Hartung HP. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64:109-127.

    Article  CAS  PubMed  Google Scholar 

  31. Siemionow M, Izycki D, Ozer K, Ozmen S, Klimczak A. Role of thymus in operational tolerance induction in limb allograft transplant model. Transplantation. 2006;81:1568-1576.

    Article  PubMed  Google Scholar 

  32. Yazici I, Unal S, Siemionow M. Composite hemiface/calvaria transplantation model in rats. Plast Reconstr Surg. 2006;118:1321-1327.

    Article  CAS  PubMed  Google Scholar 

  33. Yazici I, Carnevale K, Klimczak A, Siemionow M. A new rat model of maxilla allotransplantation. Ann Plast Surg. 2007;58:338-344.

    Article  CAS  PubMed  Google Scholar 

  34. Kulahci Y, Siemionow M. A new composite hemiface/mandible/tongue transplantation model in rats. Ann Plast Surg. 2010;64:114-121.

    Article  CAS  PubMed  Google Scholar 

  35. Pree I, Pilat N, Wekerle T. Recent progress in tolerance induction through mixed chimerism. Int Arch Allergy Immunol. 2007;144:254-266.

    Article  PubMed  Google Scholar 

  36. Murase N, Starzl TE, Tanabe M, et al. Variable chimerism, graft-versus-host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to brown Norway rats. Transplantation. 1995;60:158-171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barratt-Boyes SM, Thomson AW. Dendritic cells: tools and targets for transplant tolerance. Am J Transplant. 2005;5:2807-2813.

    Article  CAS  PubMed  Google Scholar 

  38. Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508-1512.

    Article  CAS  PubMed  Google Scholar 

  39. Ma W, Pober JS. Human endothelial cells effectively costimulate cytokine production by, but not differentiation of, naive CD4+ T cells. J Immunol. 1998;161:2158-2167.

    CAS  PubMed  Google Scholar 

  40. Martinez-Madrigal F, Micheau C. Histology of the major salivary glands. Am J Surg Pathol. 1989;13:879-899.

    Article  CAS  PubMed  Google Scholar 

  41. O’Sullivan NL, Skandera CA, Montgomery PC. Lymphocyte lineages at mucosal effector sites: rat salivary glands. J Immunol. 2001;166:5522-5529.

    Article  CAS  PubMed  Google Scholar 

  42. Cutler CW, Jotwani R. Dendritic cells at the oral mucosal interface. J Dent Res. 2006;85:678-689.

    Article  CAS  PubMed  Google Scholar 

  43. Jotwani R, Cutler CW. Multiple dendritic cell (DC) subpopulations in human gingiva and association of mature DCs with CD4+ T-cells in situ. J Dent Res. 2003;82:736-741.

    Article  CAS  PubMed  Google Scholar 

  44. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275-306.

    Article  CAS  PubMed  Google Scholar 

  45. Jotwani R, Palucka AK, Al-Quotub M, et al. Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies. J Immunol. 2001;167:4693-4700.

    Article  CAS  PubMed  Google Scholar 

  46. Monaco AP. Prospects and strategies for clinical tolerance. Transplant Proc. 2004;36:227-231.

    Article  CAS  PubMed  Google Scholar 

  47. Siemionow M, Klimczak A. Tolerance and future directions for composite tissue allograft transplants: part II. Plast Reconstr Surg. 2009;123:7e-17e.

    Article  PubMed  CAS  Google Scholar 

  48. Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB. The balance of deletion and regulation in allograft tolerance. Immunol Rev. 2003;196:75-84.

    Article  CAS  PubMed  Google Scholar 

  49. Stassen M, Schmitt E, Jonuleit H. Human CD(4+)CD(25+) regulatory T cells and infectious tolerance. Transplantation. 2004;77:S23-S25.

    Article  PubMed  Google Scholar 

  50. Sachs DH. Mixed chimerism as an approach to transplantation tolerance. Clin Immunol. 2000;95:S63-S68.

    Article  CAS  PubMed  Google Scholar 

  51. Calne RY. Prope tolerance–the future of organ transplantation from the laboratory to the clinic. Int Immunopharmacol. 2005;5:163-167.

    Article  CAS  PubMed  Google Scholar 

  52. Monaco AP. The beginning of clinical tolerance in solid organ allografts. Exp Clin Transplant. 2004;2:153-161.

    PubMed  Google Scholar 

  53. Sprent J, Kishimoto H. The thymus and negative selection. Immunol Rev. 2002;185:126-135.

    Article  CAS  PubMed  Google Scholar 

  54. Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M. Cell migration, chimerism, and graft acceptance. Lancet. 1992;339:1579-1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Remuzzi G. Cellular basis of long-term organ transplant acceptance: pivotal role of intrathymic clonal deletion and thymic dependence of bone marrow microchimerism-associated tolerance. Am J Kidney Dis. 1998;31:197-212.

    Article  CAS  PubMed  Google Scholar 

  56. Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation. 1999;68:480-484.

    Article  CAS  PubMed  Google Scholar 

  57. Buhler LH, Spitzer TR, Sykes M, et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation. 2002;74:1405-1409.

    Article  PubMed  Google Scholar 

  58. Fudaba Y, Spitzer TR, Shaffer J, et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant. 2006;6:2121-2133.

    Article  CAS  PubMed  Google Scholar 

  59. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358:353-361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance. Nat Rev Immunol. 2003;3:147-158.

    Article  CAS  PubMed  Google Scholar 

  61. Golshayan D, Pascual M. Tolerance-inducing immunosuppressive strategies in clinical transplantation: an overview. Drugs. 2008;68:2113-2130.

    Article  CAS  PubMed  Google Scholar 

  62. Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998;338:1813-1821.

    Article  CAS  PubMed  Google Scholar 

  63. Lechler R, Chai JG, Marelli-Berg F, Lombardi G. T-cell anergy and peripheral T-cell tolerance. Philos Trans R Soc Lond B Biol Sci. 2001;356:625-637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Siemionow M, Klimczak A. Basics of immune responses in transplantation in preparation for application of composite tissue allografts in plastic and reconstructive surgery: part I. Plast Reconstr Surg. 2008;121:4e-12e.

    Article  PubMed  CAS  Google Scholar 

  65. Petruzzo P, Lanzetta M, Dubernard JM, et al. The international registry on hand and composite tissue transplantation. Transplantation. 2008;86:487-492.

    Article  PubMed  Google Scholar 

  66. Brennan DC, Flavin K, Lowell JA, et al. Leukocyte response to thymoglobulin or atgam for induction immunosuppression in a randomized, double-blind clinical trial in renal transplant recipients. Transplant Proc. 1999;31:16S-18S.

    Article  CAS  PubMed  Google Scholar 

  67. Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of thymoglobulin versus atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation. 1999;67:1011-1018.

    Article  CAS  PubMed  Google Scholar 

  68. Calne R, Friend P, Moffatt S, et al. Prope tolerance, perioperative campath 1 H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet. 1998;351:1701-1702.

    Article  CAS  PubMed  Google Scholar 

  69. Watson CJ, Bradley JA, Friend PJ, et al. Alemtuzumab (CAMPATH 1 H) induction therapy in cadaveric kidney transplantation–efficacy and safety at five years. Am J Transplant. 2005;5:1347-1353.

    Article  CAS  PubMed  Google Scholar 

  70. Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005;80:1233-1243.

    Article  CAS  PubMed  Google Scholar 

  71. Pham PT, Lipshutz GS, Kawahji J, Singer JS, Pham PC. The evolving role of alemtuzumab (Campath-1 H) in renal transplantation. Drug Des Devel Ther. 2009;3:41-49.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Benfield MR, Tejani A, Harmon WE, et al. A randomized multicenter trial of OKT3 mAbs induction compared with intravenous cyclosporine in pediatric renal transplantation. Pediatr Transplant. 2005;9:282-292.

    Article  CAS  PubMed  Google Scholar 

  73. Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol. 2009;5:499-521.

    Article  CAS  PubMed  Google Scholar 

  74. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996;381:434-438.

    Article  CAS  PubMed  Google Scholar 

  75. Wekerle T, Sayegh MH, Ito H, et al. Anti-CD154 or CTLA4Ig obviates the need for thymic irradiation in a non-myeloablative conditioning regimen for the induction of mixed hematopoietic chimerism and tolerance. Transplantation. 1999;68:1348-1355.

    Article  CAS  PubMed  Google Scholar 

  76. Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol. 1997;9:641-647.

    Article  CAS  PubMed  Google Scholar 

  77. Elster EA, Xu H, Tadaki DK, et al. Treatment with the humanized CD154-specific monoclonal antibody, hu5C8, prevents acute rejection of primary skin allografts in nonhuman primates. Transplantation. 2001;72:1473-1478.

    Article  CAS  PubMed  Google Scholar 

  78. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 2000;6:114.

    Article  CAS  PubMed  Google Scholar 

  79. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001;1:220-228.

    Article  CAS  PubMed  Google Scholar 

  80. Levisetti MG, Padrid PA, Szot GL, et al. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol. 1997;159:5187-5191.

    CAS  PubMed  Google Scholar 

  81. Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation. 2001;72:377-384.

    Article  CAS  PubMed  Google Scholar 

  82. Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5:443-453.

    Article  CAS  PubMed  Google Scholar 

  83. Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353:770-781.

    Article  CAS  PubMed  Google Scholar 

  84. Larsen CP, Knechtle SJ, Adams A, Pearson T, Kirk AD. A new look at blockade of T-cell costimulation: a therapeutic strategy for long-term maintenance immunosuppression. Am J Transplant. 2006;6:876-883.

    Article  CAS  PubMed  Google Scholar 

  85. Adams AB, Shirasugi N, Jones TR, et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol. 2005;174:542-550.

    Article  CAS  PubMed  Google Scholar 

  86. Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25+ regulatory T cells. J Immunol. 2003;171:3348-3352.

    Article  CAS  PubMed  Google Scholar 

  87. Muller YD, Mai G, Morel P, et al. Anti-CD154 mAb and rapamycin induce T regulatory cell mediated tolerance in rat-to-mouse islet transplantation. PLoS ONE. 2010;5:e10352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Vincenti F, de Andres A, Becker T, et al. Interleukin-2 receptor antagonist induction in modern immunosuppression regimens for renal transplant recipients. Transpl Int. 2006;19:446-457.

    Article  CAS  PubMed  Google Scholar 

  89. Baan CC, van der Mast BJ, Klepper M, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation. 2005;80:110-117.

    Article  CAS  PubMed  Google Scholar 

  90. Tedesco-Silva H, Mourad G, Kahan BD, et al. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation. 2005;79:1553-1560.

    Article  CAS  PubMed  Google Scholar 

  91. Nicolls MR, Gill RG. LFA-1 (CD11a) as a therapeutic target. Am J Transplant. 2006;6:27-36.

    Article  CAS  PubMed  Google Scholar 

  92. Vincenti F, Mendez R, Pescovitz M, et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant. 2007;7:1770-1777.

    Article  CAS  PubMed  Google Scholar 

  93. Abe M, Thomson AW. Influence of immunosuppressive drugs on dendritic cells. Transpl Immunol. 2003;11:357-365.

    Article  CAS  PubMed  Google Scholar 

  94. Lee JI, Ganster RW, Geller DA, Burckart GJ, Thomson AW, Lu L. Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B. Transplantation. 1999;68:1255-1263.

    Article  CAS  PubMed  Google Scholar 

  95. Tajima K, Amakawa R, Ito T, Miyaji M, Takebayashi M, Fukuhara S. Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets. Immunology. 2003;108:321-328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Teunissen MB, De Jager MH, Kapsenberg ML, Bos JD. Inhibitory effect of cyclosporin A on antigen and alloantigen presenting capacity of human epidermal Langerhans cells. Br J Dermatol. 1991;125:309-316.

    Article  CAS  PubMed  Google Scholar 

  97. Flanagan WM, Corthesy B, Bram RJ, Crabtree GR. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 1991;352:803-807.

    Article  CAS  PubMed  Google Scholar 

  98. Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A. Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol. 2002;169:3555-3564.

    Article  CAS  PubMed  Google Scholar 

  99. Salgado CG, Nakamura K, Sugaya M, et al. Differential effects of cytokines and immunosuppressive drugs on CD40, B7-1, and B7-2 expression on purified epidermal Langerhans cells1. J Invest Dermatol. 1999;113:1021-1027.

    Article  CAS  PubMed  Google Scholar 

  100. Wollenberg A, Sharma S, von Bubnoff D, Geiger E, Haberstok J, Bieber T. Topical tacrolimus (FK506) leads to profound phenotypic and functional alterations of epidermal antigen-presenting dendritic cells in atopic dermatitis. J Allergy Clin Immunol. 2001;107:519-525.

    Article  CAS  PubMed  Google Scholar 

  101. Homey B, Assmann T, Vohr HW, et al. Topical FK506 suppresses cytokine and costimulatory molecule expression in epidermal and local draining lymph node cells during primary skin immune responses. J Immunol. 1998;160:5331-5340.

    CAS  PubMed  Google Scholar 

  102. Liu HN, Wong CK. In vitro immunosuppressive effects of methotrexate and azathioprine on Langerhans cells. Arch Dermatol Res. 1997;289:94-97.

    Article  CAS  PubMed  Google Scholar 

  103. Fulton B, Markham A. Mycophenolate mofetil. A review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs. 1996;51:278-298.

    Article  CAS  PubMed  Google Scholar 

  104. Mehling A, Grabbe S, Voskort M, Schwarz T, Luger TA, Beissert S. Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J Immunol. 2000;165:2374-2381.

    Article  CAS  PubMed  Google Scholar 

  105. Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L. Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol. 2001;167:1945-1953.

    Article  CAS  PubMed  Google Scholar 

  106. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem. 1998;31:335-340.

    Article  CAS  PubMed  Google Scholar 

  107. Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med. 1999;5:1303-1307.

    Article  CAS  PubMed  Google Scholar 

  108. Segundo DS, Ruiz JC, Izquierdo M, et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation. 2006;82:550-557.

    Article  PubMed  CAS  Google Scholar 

  109. Monti P, Mercalli A, Leone BE, Valerio DC, Allavena P, Piemonti L. Rapamycin impairs antigen uptake of human dendritic cells. Transplantation. 2003;75:137-145.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Z. Siemionow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Klimczak, A., Siemionow, M.Z. (2011). Immunological Aspects of Face Transplantation. In: Siemionow, M. (eds) The Know-How of Face Transplantation. Springer, London. https://doi.org/10.1007/978-0-85729-253-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-253-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-252-0

  • Online ISBN: 978-0-85729-253-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics