Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter faces the description of the main object of the book, namely, the chemical batch reactor. First, the batch reactor is compared to the continuous reactors in the light of ideal physical models, the main ideas of chemical kinetics are reviewed, and the relevant modeling of the isothermal batch reactor is developed. Then, the heat balance introduces elements of realism in the modeling, in particular the coupling of the reactor with the heat exchange device, which is used for both heating and cooling. On the basis of these results, a case study is presented, both in the form of the phenol–formaldehyde reaction and of its generalization in the wider class of irreversible nonchain reactions. They are both used in the following chapters as illustrative examples for identification, control, and diagnosis. Finally, some remarks are given on measuring and manipulating the reactor status, thus providing the reader with a few useful basic concepts and information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

reactant A

B:

reactant B

c :

mass heat capacity [J kg−1 K−1]

C :

concentration [mol m−3]

DPh:

aggregate dimers

E a :

activation energy [J mol−1]

ΔE R :

internal energy change of reaction [J mol−1]

F:

formaldehyde

F V :

volumetric flow rate [m3 s−1]

F M :

molar flow rate [mol s−1]

ΔH R :

molar enthalpy change of reaction [J mol−1]

I:

reaction intermediate

k 0 :

preexponential factor [(mol m−3)1−n s−1]

k c :

rate constant [(mol m−3)1−n s−1]

K eq :

equilibrium constant

m :

mass [kg]

MPh:

mono- and di-methylolphenols

n :

order of reaction

N :

number of moles [mol]

N C :

number of species

N R :

number of reactions

P:

reaction product

Ph:

phenol

PPh:

polyphenols

R :

reaction rate [mol m−3 s−1]

\(\mathcal{R}\) :

universal gas constant [J mol−1 K−1]

R :

radical species

S :

heat transfer area [m2]

\(\mathcal{S}\) :

selectivity

t :

time [s]

t b :

batch time [s]

t P :

residence time [s]

T :

temperature [K]

TMPh:

trimethylolphenol

U :

overall heat transfer coefficient [J m−2 K−1 s−1]

V :

volume [m3]

X :

degree of conversion

ρ :

density [kg m−3]

υ :

stoichiometric coefficient

a:

ambient conditions

A:

reactant A

ad:

adiabatic conditions

B:

reactant B

in:

inlet

j:

jacket

max :

maximum

min :

minimum

out:

outlet

r:

reactor

0:

initial value

°:

reference value

References

  1. J.H. Altman. Densitometry measurements. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition, Chap. 57. CRC Press, Boca Raton, 1999.

    Google Scholar 

  2. N.A. Anderson. Instrumentation for Process Measurement and Control. CRC Press, Boca Raton, 1998.

    Google Scholar 

  3. D. Bonvin. Optimal operation of batch reactors—a personal view. Journal of Process Control, 8(5/6):355–368, 1998.

    Article  Google Scholar 

  4. M. Buback and A.M. van Herk. Radical Polymerization: Kinetics and Mechanism. Wiley-VCH, Weinheim, 2007.

    Book  Google Scholar 

  5. K.H.L. Chau, R. Goehner, E. Drubetsky, H.M. Brady, W.H. Bayles, Jr., and P.C. Pedersen. Pressure and sound measurement. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition, Chap. 26. CRC Press, Boca Raton, 1999.

    Google Scholar 

  6. I. Chorkendorff and J.W. Niemantsverdriet. Concept of Modern Catalysis and Kinetics. Wiley-VCH, Weinheim, 2003.

    Book  Google Scholar 

  7. J.A. Dean. The Analytical Chemistry Handbook. McGraw Hill, New York, 1995.

    Google Scholar 

  8. K.C. Eapen and L.M. Yeddenapalli. Kinetics and mechanism of the alkali-catalyzed addition of formaldehyde to phenol and substituted phenols. Die Makromolekulare Chemie, 119(2766):4–16, 1968.

    Article  Google Scholar 

  9. W. Hesse. Phenolic resins. In Ullmann’s Encyclopedia of Industrial Chemistry, 6th Edition. Wiley, New York, 2001.

    Google Scholar 

  10. O. Levenspiel. Chemical Reaction Engineering, 3rd Edition. Wiley, New York, 1999.

    Google Scholar 

  11. L.B. Manfredi, C.C. Riccardi, O. de la Osa, and A. Vazquez. Modelling of resol resin polymerization with various formaldehyde/phenol molar ratios. Polymer International, 50:796–802, 2001.

    Article  Google Scholar 

  12. J. Nielsen, J. Villadsen, and G. Lidén. Bioreaction Engineering Principles, 2nd Edition. Kluwer Academic, New York, 2003.

    Book  Google Scholar 

  13. R.P. Reed. Thermal effects in industrial electronics circuits. In J.D. Irwin, editor, Industrial Electronics Handbook. CRC Press, Boca Raton, 1996.

    Google Scholar 

  14. C.C. Riccardi, G. Astarloa Aierbe, J.M. Echeverria, and I. Mondragon. Modelling of phenolic resin polymerisation. Polymer, 43:1631–1639, 2002.

    Article  Google Scholar 

  15. N.F. Sheppard, Jr. and A. Giuseppi-Elie. PH measurements. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition. Chap. 71. CRC Press, Boca Raton, 1999.

    Google Scholar 

  16. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, and Z. Qin. GRI-Mech 3.0. A kinetic mechanism to model natural gas combustion. www.me.berkley.edu/grimech/.

  17. P. Trambouze and J.-P. Euzen. Chemical Reactors: From Design to Operation. Editions Technip, Paris, 2004.

    Google Scholar 

  18. S. van Herwaarden. Calorimetry measurement. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition, Chap. 36. CRC Press, Boca Raton, 1999.

    Google Scholar 

  19. J.G. Webster, editor. Measurement, Instrumentation, and Sensors Handbook. CRC Press, Boca Raton, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caccavale .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Caccavale, F., Iamarino, M., Pierri, F., Tufano, V. (2011). The Chemical Batch Reactor. In: Control and Monitoring of Chemical Batch Reactors. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-195-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-195-0_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-194-3

  • Online ISBN: 978-0-85729-195-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics