Skip to main content

Graphite Nanoplatelet Composites and Their Applications

  • Conference paper
  • First Online:
Book cover Composite Materials

Abstract

Graphite nanoplatelets (GNPs) are an attractive class of reinforcement materials as they offer both high modulus and high strength. GNPs have a thickness of <100 nm although their planar dimensions can be as large as a few micrometers. As with any other nanoscale particles, their effectiveness as a reinforcement phase depends on the surface functionalization, which controls dispersion and interfacial bonding. A simple surface oxidation using nitric acid is shown to yield as good an improvement in composite properties as a few other functional groups chemically bonded to the surface do. The properties discussed include modulus, strength, fracture toughness, adhesive strength, thermal and electrical conductivities, and dielectric constants. Methods of further exfoliating GNPs are discussed together with the associated benefits on composite properties. Potential applications of graphite nanoplatelet composites are presented to conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dzenis Y (2008) Structural nanocomposites. Science 319:419–420

    Article  CAS  Google Scholar 

  2. Delhaes P (ed) (2001) Graphite and precursors. CRC Press, Amsterdam

    Google Scholar 

  3. Choi O, Gilje S, Hahn HT, Kaner RB (2005) Graphite nanoplatelet reiforced epoxy composites: the effect of exfoliated and surface treatment. Proc 2005 SAMPE ISSE, SAMPE, Covina, CA

    Google Scholar 

  4. Li J, Kim J-K, Sham ML (2005) Conductive graphite nanoplatelet/epoxy nanocomposites: effects of exfoliation and UV/ozone treatment of graphite. Scr Mater 53:235–240

    Article  Google Scholar 

  5. Li J, Sham ML, Kim J-K, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol 67:296–305

    Article  CAS  Google Scholar 

  6. Drzal LT, Fukushima H (2003) Proc SAMPE

    Google Scholar 

  7. Drzal LT, Fukushima H (2004) Proceedings of the American Society for Composites 19th Technical Conference

    Google Scholar 

  8. Vaia RA, Giannelis EP (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26(5):394–401

    Article  CAS  Google Scholar 

  9. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  10. Riggs DM, Shuford RJ, Lewis RW (1982) Graphite fibers and composites. In: Lubin G (ed) Handbook of composites. van Nostrand Reinhold Company, New York, pp 196–271

    Google Scholar 

  11. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    Article  CAS  Google Scholar 

  12. Hirsch A (2002) In: Angew Chem Int (ed) 1853

    Google Scholar 

  13. Lakshminayaranan PV, Toghiani H, Pittman CW (2004) Carbon 42, 2433 Asbury Carbons, www.asbury.com

  14. Hexion Specialty Chemicals, http://www.resins.com/resins/am/pdf/SC1183.pdf

  15. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295

    Article  CAS  Google Scholar 

  16. Peng H, Alemany LB, Margrave JL, Khabashesku VN (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 125:3838–3839

    Google Scholar 

  17. Wang Y, Iqbal Z, Malhotra SV (2005) Electrochemical nitration of single-wall carbon nanotubes. Chem Phys Lett 402:96

    Article  CAS  Google Scholar 

  18. Hung MT, Choi MT, Ju YSO, Hahn HT (2006) Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl Phys Lett 89:023117

    Article  Google Scholar 

  19. Lee SE, Choi O, Hahn HT (2008) Microwave properties of graphite nanoplatelet/epoxy composites. Appl Phys Lett 104:1063

    Google Scholar 

  20. Lee SE, Kang J-H, Kim V-G (2006) Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos Struct 76:397–405

    Article  Google Scholar 

  21. Oh J-H, Oh S, Kim C-G, Hong CS (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos Part B: Eng 35:49–56

    Article  Google Scholar 

  22. Wang DH, Arlen MJ, Baek J-B, Vaia RA, Tan L-S (2007) Nanocomposites derived from a low-color aromatic polyimide (CP2) and amine-functionalized vapor-grown carbon nanofibers: in situ polymerization and characterization. Macromolecules 40:6100–6111

    Article  CAS  Google Scholar 

  23. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51:1–5

    Article  CAS  Google Scholar 

  24. Enoki T, Suzuki M, Endo M (2003) Graphite intercalation compounds and applications. Oxford University Press, New York

    Google Scholar 

  25. Stankovich S, Dikin DA, Dommett DHB, Kohlhaas KH, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  26. Fukushima H, Kalaitzidou K, Drzal LT (2007) In: Proceedings of the 16th international conference on composite materials

    Google Scholar 

  27. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet–epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569

    Article  CAS  Google Scholar 

  28. Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) Intercalation and exfoliation routes to graphite nanoplatelets. J Mat Chem 15:974–978

    Article  CAS  Google Scholar 

  29. Mack JJ, Viculis LM, Ali A, Luoh R, Yang G, Hahn HT, Ko FK, Kaner RB (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mat 17:77–80

    Article  CAS  Google Scholar 

  30. McRae E, Billaud D, Mareche JF, Herold A (1980) Basal plane resistivity of alkali metal-graphite compounds. Physica B 99:489–493

    Article  CAS  Google Scholar 

  31. Kim H, Hahn HT, Viculis LM, Gilje S, Kaner RB (2007) Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon 47:1578–1582

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is based on work supported by the U.S. Air Force Office of Scientific Research under Grant F9550-05-1-0138 with Dr. B. Les Lee as the Program Manager. Appreciation is extended to the Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology for an invited professorship, to Mr. Albert Tamashausky, Asbury Carbons for providing graphite nanoplatelets, and to Dr. Loon-Seng Tan, Air Force Research Laboratory for providing functionalized graphite nanoplatelets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Hahn, H.T., Choi, O. (2011). Graphite Nanoplatelet Composites and Their Applications. In: Nicolais, L., Meo, M., Milella, E. (eds) Composite Materials. Springer, London. https://doi.org/10.1007/978-0-85729-166-0_7

Download citation

Publish with us

Policies and ethics