Skip to main content

Artificial Intelligence Techniques for the Berth Allocation and Container Stacking Problems in Container Terminals

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXVII (SGAI 2010)

Abstract

The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal’s management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel’s arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henesey, L. (2006). Overview of Transshipment Operations and Simulation. In: MedTrade conference, Malta, April. pp. 6–7.

    Google Scholar 

  2. Stahlbock, R. and Voß, S. (2008). Operations research at container terminals: a literature update. OR Spectrum 30(1), 1–52.

    Article  MATH  Google Scholar 

  3. Giallombardo, G., Moccia, L., Salani, M., and Vacca, I. (2010). Modeling and solving the tactical berth allocation problem. Transportation Research Part B: Methodological 44(2), 232–245.

    Article  Google Scholar 

  4. Yusin, L., and Hsu, N.Y. (2007). An optimization model for the container pre-marshalling problem. Computers & Operations Research 34(11), 3295–3313.

    Article  MATH  Google Scholar 

  5. Park, K., T. Park and K.R. Ryu (2009). Planning for remarshaling in an automated container terminal using cooperative coevolutionary algorithms. In: ACM symposium on Applied Computing. ACM. pp. 1098–1105.

    Google Scholar 

  6. Kim, K.H. and Hong G.P. (2006). A heuristic rule for relocating blocks. Computers & Operations Research 33(4), 940–954.

    Article  MATH  MathSciNet  Google Scholar 

  7. Winograd T. (1971). Procedures as a representation for data in a computer program for understanding natural language. MIT. Cent. Space Res.

    Google Scholar 

  8. Salido, M., Sapena, O and Barber F. (2009). The Container Stacking Problem: an Artificial Intelligence Planning-Based Approach. In Proc. of The Int. Workshop on Harbour, Maritime and Multimodal Logistics Modelling and Simulation HMS’2009. pp:127-131.

    Google Scholar 

  9. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL - the planning domain definition language. AIPS-98 Planning Committee.

    Google Scholar 

  10. Hoffmann, J. (2003). The metric-FF planning system: translating “ignoring delete lists” to numeric state variables. J. Artif. Int. Res. 20(1), 291–341.

    MATH  Google Scholar 

  11. Rodriguez, M, Salido, M., Barber F. (2009a). Domain-Dependent Planning Heuristics for Locating Containers in Maritime Terminals. Trends in Applied Intelligent Systems. IEA/AIE 2010, LNAI 6096, pp. 742–751.

    Google Scholar 

  12. Theofanis, S., Boile, M. and Golias M.M. (2009). Container terminal berth planning. Transportation Research Record: Journal of the Transportation Research Board 2100(-1), 22–28.

    Article  Google Scholar 

  13. Lai, KK and Shih, K. (1992). A study of container berth allocation. Journal of Advanced Transportation 26(1), 45–60.

    Article  Google Scholar 

  14. Guan, Y. and Cheung, R.K. (2004). The berth allocation problem: models and solution methods. OR Spectrum 26(1), 75–92.

    Article  MATH  MathSciNet  Google Scholar 

  15. Cordeau, J.F., Laporte, G., Legato, P. and Moccia, L. (2005). Models and tabu search heuristics for the berth-allocation problem. Transportation science 39(4), 526–538.

    Article  Google Scholar 

  16. Cheong, C.Y., Tan, K.C. and Liu, D.K. (2009). Solving the berth allocation problem with service priority via multi- objective optimization. In: Computational Intell. in Scheduling, 2009. CI-Sched ’09. IEEE Symposium on. pp. 95 –102.

    Google Scholar 

  17. Feo, T.A. and Resende, M.G.C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization 6(2), 109–133.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the research projects TIN2007-67943-C02-01 (MEC, Spain-FEDER), and P19/08 (M. Fomento, Spain-FEDER).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel A. Salido , Mario Rodriguez-Molins or Federico Barber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Salido, M.A., Rodriguez-Molins, M., Barber, F. (2011). Artificial Intelligence Techniques for the Berth Allocation and Container Stacking Problems in Container Terminals. In: Bramer, M., Petridis, M., Hopgood, A. (eds) Research and Development in Intelligent Systems XXVII. SGAI 2010. Springer, London. https://doi.org/10.1007/978-0-85729-130-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-130-1_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-129-5

  • Online ISBN: 978-0-85729-130-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics