The Mining and Analysis Continuum of Explaining Uncovered

Conference paper


The result of data mining is a set of patterns or models. When presenting these, all or part of the result needs to be explained to the user in order to be understandable and for increasing the user acceptance of the patterns. In doing that, a variety of dimensions for explaining needs to be considered, e.g., from concrete to more abstract explanations. This paper discusses a continuum of explaining for data mining and analysis: It describes how data mining results can be analysed on continuous dimensions and levels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atzmueller, M., Haupt, F., Beer, S., Puppe, F.: Knowta: Wiki-Enabled Social Tagging for Collaborative Knowledge and Experience Management. In: Proc. Intl. Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS), vol. CEUR-WS 545 (2009)Google Scholar
  2. 2.
    Atzmueller, M., Lemmerich, F., Reutelshoefer, J., Puppe, F.: Wiki-Enabled Semantic Data Mining - Task Design, Evaluation and Refinement. In: Proc. Intl. Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS), vol. CEUR-WS 545 (2009)Google Scholar
  3. 3.
    Atzmüller, M., Roth-Berghofer, T.: Ready for the MACE? The Mining and Analysis Continuum of Explaining uncovered. Research Report RR-10-02, Deutsches Forschungszentrum für Künstliche Intelligenz (2010). ISSN 0946-008XGoogle Scholar
  4. 4.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,Wirth, R.: CRISPDM 1.0: Step-by-Step Data Mining Guide. CRISP-DM consortium: NCR Systems Engineering Copenhagen (USA and Denmark) DaimlerChrysler AG (Germany), SPSS Inc. (USA) and OHRA Verzekeringen en Bank Groep B.V (The Netherlands) (2000)Google Scholar
  5. 5.
    Clancey, W.J.: The Epistemology of a Rule-Based Expert System: A Framework for Explanation. Artificial Intelligence 20, 215–251 (1983)CrossRefGoogle Scholar
  6. 6.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd Edition. Morgan Kaufmann, San Francisco, USA (2006)Google Scholar
  7. 7.
    Kliegr, T., Ralbovsky, M., Svatek, V., Simunuk, M., Jurkovsky, V., Nerava, J., Zemanek, J.: Semantic Analytical Reports: A Framework for Post-processing Data Mining Results. In: ISMIS 2009: Foundations of Intelligent Systems, no. 5722 in LNAI, pp. 88–98. Berlin (2009)Google Scholar
  8. 8.
    Richter, M.M.: The knowledge contained in similarity measures. Invited Talk at the First International Conference on Case-Based Reasoning, ICCBR’95, Sesimbra, Portugal (1995)Google Scholar
  9. 9.
    Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the knowledge containers of case-based reasoning systems. In: Case-Based Reasoning Research and Development, Proc. 6th Intl. Conf. on Case-Based Reasoning, no. 3620 in Lecture Notes in Artificial Intelligence LNAI, pp. 451–464. Springer Verlag, Heidelberg (2005)Google Scholar
  10. 10.
    Roth-Berghofer, T.R., Richter, M.M.: On explanation. Künstl. Intelligenz 22(2), 5–7 (2008)Google Scholar
  11. 11.
    Schank, R.C.: Explanation Patterns: Understanding Mechanically and Creatively. Lawrence Erlbaum Associates, Hillsdale, NJ (1986)Google Scholar
  12. 12.
    Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning – perspectives and goals. Artificial Intelligence Review 24(2), 109–143 (2005)CrossRefGoogle Scholar
  13. 13.
    Spieker, P.: Natürlichsprachliche Erklärungen in technischen Expertensystemen. Dissertation, University of Kaiserslautern (1991)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.University of Kassel, Knowledge and Data Engineering GroupKasselGermany
  2. 2.German Research Center for Artificial Intelligence (DFKI) GmbHKaiserslauternGermany

Personalised recommendations