Shifting theory

  • Jürgen HerzogEmail author
  • Takayuki Hibi


Chapter 11 offers a self-contained and systematic presentation of modern shifting theory from the viewpoint of generic initial ideals as well as of graded Betti numbers. Combinatorial, exterior and symmetric shifting are introduced and the comparison of the graded Betti numbers for the distinct shifting operators is studied. It is shown that the extremal graded Betti numbers of a simplicial complex and its symmetric and exterior shifted complex are the same. Finally, super-extremal Betti numbers are considered to give an algebraic proof of the Björner–Kalai theorem.


Exact Sequence Simplicial Complex Betti Number Hilbert Function Monomial Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität Duisburg-EssenEssenGermany
  2. 2.Department of Pure and Applied Mathematics, Graduate School of Information Science and TechnologyOsaka UniversityToyonakaJapan

Personalised recommendations