Analytical Support

  • Wolfgang Aigner
  • Silvia Miksch
  • Heidrun Schumann
  • Christian Tominski
Part of the Human-Computer Interaction Series book series (HCIS)

Abstract

This chapter sheds some light on analytical methods to support the analysis of time-oriented data. A general overview of temporal data analysis is provided and specific application examples will be used for demonstration.

References

  1. Antunes, C. M. and Oliveira, A. L. (2001). Temporal Data Mining: An Overview. Workshop on Temporal Data Mining at the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). Google Scholar
  2. Bade, R., Schlechtweg, S., and Miksch, S. (2004). Connecting Time-oriented Data and Information to a Coherent Interactive Visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 105–112, New York, NY, USA. ACM Press. Google Scholar
  3. Brockwell, P. J. and Davis, R. A. (2009). Time Series: Theory and Methods. Springer, New York, USA, 2nd edition. MATHGoogle Scholar
  4. Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27(3):289–350. CrossRefGoogle Scholar
  5. Combi, C., Keravnou-Papailiou, E., and Shahar, Y. (2010). Temporal Information Systems in Medicine. Springer, Berlin, Germany. CrossRefGoogle Scholar
  6. Fayyad, U., Grinstein, G. G., and Wierse, A. (2001). Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco, CA, USA. Google Scholar
  7. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3):37–54. Google Scholar
  8. Gan, G., Ma, C., and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA, USA. MATHCrossRefGoogle Scholar
  9. Han, J. and Kamber, M. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, CA, USA. Google Scholar
  10. Hsu, W., Lee, M. L., and Wang, J. (2008). Temporal and Spatio-Temporal Data Mining. IGI Global, Hershey, PA, USA. Google Scholar
  11. Jackson, J. E. (2003). A User’s Guide to Principal Components, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New York, NY, USA. Google Scholar
  12. Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing Surveys, 31:264–323. CrossRefGoogle Scholar
  13. Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., and Chang, R. (2009). iPCA: An Interactive System for PCA-based Visual Analytics. Computer Graphics Forum, 28(3):767–774. CrossRefGoogle Scholar
  14. Jolliffe, I. T. (2002). Principal Component Analysis, Springer Series in Statistics. Springer, New York, NY, USA, 2nd edition. MATHGoogle Scholar
  15. Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., editors (2010). Mastering the Information Age – Solving Problems with Visual Analytics. Eurographics Association, Geneve, Switzerland. Google Scholar
  16. Keim, D. A., Mansmann, F., Schneidewind, J., and Ziegler, H. (2006). Challenges in Visual Data Analysis. In Proceedings of the International Conference Information Visualisation (IV), pages 9–16, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  17. Laxman, S. and Sastry, P. (2006). A Survey of Temporal Data Mining. Sādhanā, 31:173–198. MathSciNetMATHGoogle Scholar
  18. Lin, J., Keogh, E. J., Wei, L., and Lonardi, S. (2007). Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Mining and Knowledge Discovery, 15(2):107–144. MathSciNetCrossRefGoogle Scholar
  19. Miksch, S., Horn, W., Popow, C., and Paky, F. (1996). Utilizing Temporal Data Abstraction for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants. Artificial Intelligence in Medicine, 8(6):543–576. CrossRefGoogle Scholar
  20. Miksch, S., Seyfang, A., Horn, W., and Popow, C. (1999). Abstracting Steady Qualitative Descriptions over Time from Noisy, High-Frequency Data. In Proceedings of the Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making (AIMDM), pages 281–290, Berlin, Germany. Springer. Google Scholar
  21. Mitsa, T. (2010). Temporal Data Mining. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Boca Raton, FL, USA. MATHCrossRefGoogle Scholar
  22. Nocke, T., Schumann, H., and Böhm, U. (2004). Methods for the Visualization of Clustered Climate Data. Computational Statistics, 19(1):75–94. MathSciNetMATHCrossRefGoogle Scholar
  23. Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336–343, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  24. Stacey, M. and McGregor, C. (2007). Temporal Abstraction in Intelligent Clinical Data Analysis: A Survey. Artificial Intelligence in Medicine, 39(1):1–24. CrossRefGoogle Scholar
  25. Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society, Los Alamitos, CA, USA. Google Scholar
  26. Van Wijk, J. J. and Van Selow, E. R. (1999). Cluster and Calendar Based Visualization of Time Series Data. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 4–9, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  27. Ware, C. (2008). Visual Thinking for Design. Morgan Kaufmann, Burlington, MA, USA. Google Scholar
  28. Wegner, P. (1997). Why Interaction Is More Powerful Than Algorithms. Communications of the ACM, 40(5):80–91. CrossRefGoogle Scholar
  29. Xu, R. and Wunsch II, D. C. (2009). Clustering. John Wiley & Sons, Inc., Hoboken, NJ, USA. Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Wolfgang Aigner
    • 1
  • Silvia Miksch
    • 1
  • Heidrun Schumann
    • 2
  • Christian Tominski
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University of RostockRostockGermany

Personalised recommendations