Visualization Aspects

  • Wolfgang Aigner
  • Silvia Miksch
  • Heidrun Schumann
  • Christian Tominski

Abstract

This chapter explains how the different characteristics of time and time-oriented data can be considered when generating visual representations. A number of examples illustrate possible visualization designs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, W., Miksch, S., Müller, W., Schumann, H., and Tominski, C. (2007). Visualizing Time-Oriented Data – A Systematic View. Computers & Graphics, 31(3):401–409. CrossRefGoogle Scholar
  2. Aigner, W., Miksch, S., Müller, W., Schumann, H., and Tominski, C. (2008). Visual Methods for Analyzing Time-Oriented Data. IEEE Transactions on Visualization and Computer Graphics, 14(1):47–60. CrossRefGoogle Scholar
  3. Aigner, W., Miksch, S., Thurnher, B., and Biffl, S. (2005). PlanningLines: Novel Glyphs for Representing Temporal Uncertainties and their Evaluation. In Proceedings of the International Conference Information Visualisation (IV), pages 457–463, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  4. Andrienko, N. and Andrienko, G. (2006). Exploratory Analysis of Spatial and Temporal Data. Springer, Berlin, Germany. MATHGoogle Scholar
  5. Been, K., Daiches, E., and Yap, C.-K. (2006). Dynamic Map Labeling. IEEE Transactions on Visualization and Computer Graphics, 12(5):773–780. CrossRefGoogle Scholar
  6. Bergman, L., Rogowitz, B. E., and Treinish, L. A. (1995). A Rule-based Tool for Assisting Colormap Selection. In Proceedings of IEEE Visualization (Vis), pages 118–125, Washington, DC, USA. IEEE Computer Society. Google Scholar
  7. Bertin, J. (1983). Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison, WI, USA. translated by William J. Berg. Google Scholar
  8. Borland, D. and Taylor, R. (2007). Rainbow Color Map (Still) Considered Harmful. IEEE Computer Graphics and Applications, 27(2):14–17. CrossRefGoogle Scholar
  9. Card, S., Mackinlay, J., and Shneiderman, B. (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers, San Francisco, CA, USA. Google Scholar
  10. Constantine, L. L. (2003). Canonical Abstract Prototypes for Abstract Visual and Interaction Design. In Jorge, J., Nunes, N. J., and e Cunha, J. F., editors, Interactive Systems: Design, Specification, and Verification, volume 2844 of Lecture Notes in Computer Science. Springer, Berlin, Germany. Google Scholar
  11. Courage, C. and Baxter, K. (2005). Understanding Your Users. Morgan Kaufmann, San Francisco, CA, USA. Google Scholar
  12. Elmqvist, N. and Tsigas, P. (2007). A Taxonomy of 3D Occlusion Management Techniques. In Proceedings of the IEEE Conference on Virtual Reality (VR), pages 51–58, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  13. Farquhar, A. B. and Farquhar, H. (1891). Economic and Industrial Solutions. G. B. Putnam’s Sons, New York, NY. Google Scholar
  14. Fuchs, G. and Schumann, H. (2004). Intelligent Icon Positioning for Interactive Map-Based Information Systems. In Proceedings of the International Conference of the Information Resources Management Association (IRMA), pages 261–264, Hershey, PA, USA. Idea Group Inc.. Google Scholar
  15. Gapminder Foundation (2010). Gapminder Trendalyzer. URL, http://www.gapminder.org/world/. Retrieved Feb., 2011.
  16. Hackos, J. T. and Redish, J. C. (1998). User and Task Analysis for Interface Design. John Wiley & Sons, Inc., New York, NY, USA. Google Scholar
  17. Harris, R. L. (1999). Information Graphics: A Comprehensive Illustrated Reference. Oxford University Press, New York, NY, USA. Google Scholar
  18. Harrower, M. A. and Brewer, C. A. (2003). ColorBrewer.org: An Online Tool for Selecting Color Schemes for Maps. The Cartographic Journal, 40(1):27–37. CrossRefGoogle Scholar
  19. Havre, S., Hetzler, E., and Nowell, L. (2000). ThemeRiver: Visualizing Theme Changes Over Time. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 115–124, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  20. Havre, S., Hetzler, E., Whitney, P., and Nowell, L. (2002). ThemeRiver: Visualizing Thematic Changes in Large Document Collections. IEEE Transactions on Visualization and Computer Graphics, 8(1):9–20. CrossRefGoogle Scholar
  21. Inselberg, A. and Dimsdale, B. (1990). Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. In Proceedings of IEEE Visualization (Vis), pages 361–378, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  22. Kolojejchick, J., Roth, S. F., and Lucas, P. (1997). Information Appliances and Tools in Visage. IEEE Computer Graphics and Applications, 17(4):32–41. CrossRefGoogle Scholar
  23. Kraak, M.-J. (2003). The Space-Time Cube Revisited from a Geovisualization Perspective. In Proceedings of the 21st International Cartographic Conference (ICC), pages 1988–1995, Newcastle, UK. The International Cartographic Association (ICA). Google Scholar
  24. Kristensson, P., Dahlback, N., Anundi, D., Bjornstad, M., Gillberg, H., Haraldsson, J., Martensson, I., Nordvall, M., and Stahl, J. (2009). An Evaluation of Space Time Cube Representation of Spatiotemporal Patterns. IEEE Transactions on Visualization and Computer Graphics, 15(4):696–702. CrossRefGoogle Scholar
  25. Luboschik, M., Schumann, H., and Cords, H. (2008). Particle-Based Labeling: Fast Point-feature Labeling Without Obscuring Other Visual Features. IEEE Transactions on Visualization and Computer Graphics, 14(6):1237–1244. CrossRefGoogle Scholar
  26. Mackinlay, J. (1986). Automating the Design of Graphical Presentations of Relational Information. ACM Transactions on Graphics, 5(2):110–141. CrossRefGoogle Scholar
  27. McEachren, A. M. (1995). How Maps Work: Representation, Visualization, and Design. Guilford Press, New York, NY, USA. Google Scholar
  28. Müller, W. and Schumann, H. (2003). Visualization Methods for Time-Dependent Data - An Overview. In Proceedings of Winter Simulation Conference (WSC), pages 737–745, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  29. Nelson, A. (2008). Travel Time to Major Cities: A Global Map of Accessibility. Office for Official Publications of the European Communities, Luxembourg. Google Scholar
  30. Paternò, F., Mancini, C., and Meniconi, S. (1997). ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. In Proceedings of IFIP TC13 International Conference on Human-Computer Interaction (INTERACT), pages 362–369, Boston, MA, USA. Kluwer Academic Publishers. Google Scholar
  31. Paternò, F. and Santoro, C. (2002). One Model, Many Interfaces. In Proceedings of the Fourth International Conference on Computer-Aided Design of User Interfaces (CADUI), pages 143–154, Boston, MA, USA. Kluwer Academic Publishers. Google Scholar
  32. Petzold, I. (2003). Beschriftung von Bildschirmkarten in Echtzeit, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn. Google Scholar
  33. Robertson, G., Fernandez, R., Fisher, D., Lee, B., and Stasko, J. (2008). Effectiveness of Animation in Trend Visualization. IEEE Transactions on Visualization and Computer Graphics, 14:1325–1332. CrossRefGoogle Scholar
  34. Schulze-Wollgast, P., Tominski, C., and Schumann, H. (2005). Enhancing Visual Exploration by Appropriate Color Coding. In Proceedings of the International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), pages 203–210, Plzen, Czech Republic. University of West Bohemia. Google Scholar
  35. Silva, S., Madeira, J., and Santos, B. S. (2007). There is More to Color Scales than Meets the Eye: A Review on the Use of Color in Visualization. In Proceedings of the International Conference Information Visualisation (IV), pages 943–950, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  36. Silva, S. F. and Catarci, T. (2000). Visualization of Linear Time-Oriented Data: A Survey. In Proceedings of the International Conference on Web Information Systems Engineering (WISE), pages 310–319, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  37. Simons, D. J. and Rensink, R. A. (2005). Change Blindness: Past, Present, and Future. Trends in Cognitive Sciences, 9(1):16–20. CrossRefGoogle Scholar
  38. Stolte, C., Tang, D., and Hanrahan, P. (2002). Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases. IEEE Transactions on Visualization and Computer Graphics, 8(1):52–65. CrossRefGoogle Scholar
  39. Telea, A. C. (2007). Data Visualization: Principles and Practice. A K Peters, Ltd., Natick, MA, USA. Google Scholar
  40. Tominski, C., Abello, J., and Schumann, H. (2004). Axes-Based Visualizations with Radial Layouts. In Proceedings of the ACM Symposium on Applied Computing (SAC), pages 1242–1247, New York, NY, USA. ACM Press. CrossRefGoogle Scholar
  41. Tominski, C., Fuchs, G., and Schumann, H. (2008). Task-Driven Color Coding. In Proceedings of the International Conference Information Visualisation (IV), pages 373–380, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  42. Tominski, C., Schulze-Wollgast, P., and Schumann, H. (2005). 3D Information Visualization for Time Dependent Data on Maps. In Proceedings of the International Conference Information Visualisation (IV), pages 175–181, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  43. Tufte, E. R. (1983). The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT. Google Scholar
  44. Tversky, B., Morrison, J. B., and Betrancourt, M. (2002). Animation: Can It Facilitate? International Journal of Human-Computer Studies, 57(4):247–262. CrossRefGoogle Scholar
  45. Unger, A. and Schumann, H. (2009). Visual Support for the Understanding of Simulation Processes. In Proceedings of the IEEE Pacific Visualization Symposium (PacificVis), pages 57–64, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  46. Vande Moere, A. (2004). Time-Varying Data Visualization Using Information Flocking Boids. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 97–104, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  47. Ward, M. O. (1994). XmdvTool: Integrating Multiple Methods for Visualizing Multivariate Data. In Proceedings of IEEE Visualization (Vis), pages 326–333, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  48. Weber, M., Alexa, M., and Müller, W. (2001). Visualizing Time-Series on Spirals. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 7–14, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  49. Winckler, M. A., Palanque, P., and Freitas, C. M. D. S. (2004). Tasks and Scenario-Based Evaluation of Information Visualization Techniques. In Proceedings of the Annual Conference on Task Models and Diagrams (TAMODIA), pages 165–172, New York, NY, USA. ACM Press. CrossRefGoogle Scholar
  50. Wolter, M., Assenmacher, I., Hentschel, B., Schirski, M., and Kuhlen, T. (2009). A Time Model for Time-Varying Visualization. Computer Graphics Forum, 28(6):1561–1571. CrossRefGoogle Scholar
  51. Yang, J., Wang, W., and Yu, P. S. (2000). Mining Asynchronous Periodic Patterns in Time Series Data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 275–279, New York, NY, USA. ACM Press. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Wolfgang Aigner
    • 1
  • Silvia Miksch
    • 1
  • Heidrun Schumann
    • 2
  • Christian Tominski
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University of RostockRostockGermany

Personalised recommendations