Time & Time-Oriented Data

  • Wolfgang Aigner
  • Silvia Miksch
  • Heidrun Schumann
  • Christian Tominski
Part of the Human-Computer Interaction Series book series (HCIS)

Abstract

This chapter investigates in detail the characteristics of time and time-oriented data. Design aspects for modeling time and time-oriented data are introduced and discussed using examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, W., Miksch, S., Thurnher, B., and Biffl, S. (2005). PlanningLines: Novel Glyphs for Representing Temporal Uncertainties and their Evaluation. In Proceedings of the International Conference Information Visualisation (IV), pages 457–463, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  2. Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26(11):832–843. MATHCrossRefGoogle Scholar
  3. Bettini, C., Jajodia, S., and Wang, X. S. (2000). Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Secaucus, NJ, USA, 1st edition. MATHGoogle Scholar
  4. Cleveland, W. (1993). Visualizing Data. Hobart Press, Summit, NJ, USA. Google Scholar
  5. Combi, C. and Pozzi, G. (2001). HMAP - A Temporal Data Model Managing Intervals with Different Granularities and Indeterminacy from Natural Language Sentences. The VLDB Journal, 9(4):294–311. MATHGoogle Scholar
  6. Dyreson, C. E., Evans, W. S., Lin, H., and Snodgrass, R. T. (2000). Efficiently Supporting Temporal Granularities. IEEE Transactions on Knowledge and Data Engineering, 12(4):568–587. CrossRefGoogle Scholar
  7. Frank, A. U. (1998). Different Types of “Times” in GIS. In Egenhofer, M. J. and Golledge, R. G., editors, Spatial and Temporal Reasoning in Geographic Information Systems, pages 40–62. Oxford University Press, New York, NY, USA. Google Scholar
  8. Furia, C. A., Mandrioli, D., Morzenti, A., and Rossi, M. (2010). Modeling Time in Computing: A Taxonomy and a Comparative Survey. ACM Computing Surveys, 42:6:1–6:59. CrossRefGoogle Scholar
  9. Goralwalla, I. A., Özsu, M. T., and Szafron, D. (1998). An Object-Oriented Framework for Temporal Data Models. In Etzion, O.et al., editors, Temporal Databases: Research and Practice, pages 1–35. Springer, Berlin, Germany. CrossRefGoogle Scholar
  10. Hajnicz, E. (1996). Time Structures: Formal Description and Algorithmic Representation, volume 1047 of Lecture Notes in Computer Science. Springer, Berlin. Google Scholar
  11. Harris, R. L. (1999). Information Graphics: A Comprehensive Illustrated Reference. Oxford University Press, New York, NY, USA. Google Scholar
  12. Hochheiser, H. and Shneiderman, B. (2004). Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration. Information Visualization, 3(1):1–18. CrossRefGoogle Scholar
  13. Jensen, C. S., Dyreson, C. E., Böhlen, M. H., Clifford, J., Elmasri, R., Gadia, S. K., Grandi, F., Hayes, P. J., Jajodia, S., Käfer, W., Kline, N., Lorentzos, N. A., Mitsopoulos, Y. G., Montanari, A., Nonen, D. A., Peressi, E., Pernici, B., Roddick, J. F., Sarda, N. L., Scalas, M. R., Segev, A., Snodgrass, R. T., Soo, M. D., Tansel, A. U., Tiberio, P., and Wiederhold, G. (1998). The Consensus Glossary of Temporal Database Concepts – February 1998 Version. In Etzion, O., Jajodia, S., and Sripada, S., editors, Temporal Databases: Research and Practice, volume 1399 of Lecture Notes in Computer Science, pages 367–405. Springer, Berlin, Germany. CrossRefGoogle Scholar
  14. Lee, J. Y., Elmasri, R., and Won, J. (1998). An Integrated Temporal Data Model Incorporating Time Series Concept. Data and Knowledge Engineering, 24(3):257–276. MATHCrossRefGoogle Scholar
  15. Lenz, H. (2005). Universalgeschichte der Zeit. Marixverlag, Wiesbaden, Germany. Google Scholar
  16. Liu, L. and Özsu, M. (2009). Encyclopedia of Database Systems. Springer, Berlin, Heidelberg, Germany. MATHCrossRefGoogle Scholar
  17. Matković, K., Hauser, H., Sainitzer, R., and Gröller, E. (2002). Process Visualization with Levels of Detail. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 67–70, Los Alamitos, CA, USA. IEEE Computer Society. Google Scholar
  18. Mennis, J. L., Peuquet, D., and Qian, L. (2000). A Conceptual Framework for Incorporating Cognitive Principles into Geographical Database Representation. International Journal of Geographical Information Science, 14(6):501–520. CrossRefGoogle Scholar
  19. Mintz, D., Fitz-Simons, T., and Wayland, M. (1997). Tracking Air Quality Trends with SAS/GRAPH. In Proceedings of the 22nd Annual SAS User Group International Conference (SUGI97), pages 807–812, Cary, NC, USA. SAS. Google Scholar
  20. Peuquet, D. J. (1994). It’s about Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems. Annals of the Association of American Geographers, 84(3):441–461. CrossRefGoogle Scholar
  21. Peuquet, D. J. (2002). Representations of Space and Time. The Guilford Press, New York, NY, USA. Google Scholar
  22. Shahar, Y., Miksch, S., and Johnson, P. (1998). The Asgaard Project: A Task-Specific Framework for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artificial Intelligence in Medicine, 14(1-2):29–51. CrossRefGoogle Scholar
  23. Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336–343, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  24. Steiner, A. (1998). A Generalisation Approach to Temporal Data Models and their Implementations, PhD thesis, Swiss Federal Institute of Technology. Google Scholar
  25. Tory, M. and Möller, T. (2004). Rethinking Visualization: A High-Level Taxonomy. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 151–158, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
  26. Whitrow, G. J., Fraser, J. T., and Soulsby, M. P. (2003). What is Time?: The Classic Account of the Nature of Time. Oxford University Press, New York, NY, USA. Google Scholar
  27. Wolter, M., Assenmacher, I., Hentschel, B., Schirski, M., and Kuhlen, T. (2009). A Time Model for Time-Varying Visualization. Computer Graphics Forum, 28(6):1561–1571. CrossRefGoogle Scholar
  28. Wright, H. (2007). Introduction to Scientific Visualization. Springer, Berlin, Germany. MATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Wolfgang Aigner
    • 1
  • Silvia Miksch
    • 1
  • Heidrun Schumann
    • 2
  • Christian Tominski
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University of RostockRostockGermany

Personalised recommendations