Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1413 Accesses

Abstract

The main purpose of using feedback is to compensate for external disturbances and for model uncertainties. Actually, when a sufficiently accurate model of the integral process is available (and the process dynamics does not change significantly during the process operations), control performance can be improved in general by conveniently employing an additional feedforward (open-loop) control law, thus employing a two-degree-of-freedom control. After having presented the standard two-degree-of-freedom control scheme, this chapter focuses on different methodologies for the design and the implementation of a feedforward control law, to be adopted in conjunction with the feedback action provided by a PID controller. It is shown that the problem can be approached from different points of view. In particular, regarding the set-point following task, two kinds of approaches are presented: the design of a causal feedforward action and of a noncausal feedforward action. In the first case a (nonlinear) two-state control law is described. In the second case, to be employed when desired process output transitions are known in advance, strategies based on input–output inversion are explained both in the continuous-time and discrete-time frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Åström, K.J., Wittenmark, B.: Computer-Controlled Systems—Theory and Design. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  2. Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID controllers—a survey. Control Eng. Pract. 1, 699–714 (1993)

    Article  Google Scholar 

  3. Beschi, M., Piazzi, A., Visioli, A.: On the practical implementation of a noncausal feedforward technique for PID control. In: Proceedings European Control Conference, pp. 1806–1811, Budapest, HU, 2009

    Google Scholar 

  4. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41, 930–943 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hägglund, T., Åström, K.J.: Supervision of adaptive control algorithms. Automatica 36(2), 1171–1180 (2000)

    Article  MATH  Google Scholar 

  6. Hunt, L.R., Meyer, G.: Stable inversion for nonlinear systems. Automatica 33(8), 1549–1554 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hunt, L.R., Meyer, G., Su, R.: Noncausal inverses for linear systems. IEEE Trans. Autom. Control 41, 608–611 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kristiansson, B., Lennartson, B.: Robust and optimal tuning of PI and PID controllers. IEE Proc., Control Theory Appl. 149(1), 17–25 (2001)

    Article  Google Scholar 

  9. Leva, A., Cox, C., Ruano, A.: Hands-on PID autotuning: a guide to better utilisation. Technical report, IFAC Technical Brief (2001), available at www.ifac-control.org

  10. Lewis, F.L.: Optimal control. In: Levine, W.S. (ed.) The Control Handbook, pp. 759–778. CRC Press, Boca Raton (1996)

    Google Scholar 

  11. Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Inc., Englewood Cliffs (1989)

    Google Scholar 

  12. Perez, H., Devasia, S.: Optimal output transitions for linear systems. Automatica 39, 181–192 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Piazzi, A., Visioli, A.: Minimum-time system-inversion-based motion planning for residual vibration reduction. IEEE/ASME Trans. Mechatron. 5(1), 12–22 (2000)

    Article  Google Scholar 

  14. Piazzi, A., Visioli, A.: Optimal inversion-based control for the set-point regulation of nonminimum-phase uncertain scalar systems. IEEE Trans. Autom. Control 46, 1654–1659 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Piazzi, A., Visioli, A.: Optimal noncausal set-point regulation of scalar systems. Automatica 37(1), 121–127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piazzi, A., Visioli, A.: Robust set-point constrained regulation via dynamic inversion. Int. J. Robust Nonlinear Control 11, 1–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Piazzi, A., Visioli, A.: Using stable input-output inversion for minimum-time feedforward constrained regulation of scalar systems. Automatica 41(2), 305–313 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Piazzi, A., Visioli, A.: A noncausal approach for PID control. J. Process Control 16, 831–843 (2006)

    Article  Google Scholar 

  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. Sung, S.W., Lee, I.-B., Lee, B.-K.: On-line process identification and automatic tuning method for PID controllers. Chem. Eng. Sci. 53, 1847–1859 (1998)

    Article  Google Scholar 

  21. Veronesi, M., Visioli, A.: A technique for abrupt load disturbance detection in process control systems. In: Proceedings 17th IFAC World Congress on Automatic Control, pp. 14900–14905, Seoul, ROK, 2008

    Google Scholar 

  22. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc., Control Theory Appl. 148(2), 180–184 (2001)

    Article  Google Scholar 

  23. Visioli, A.: A new design for a PID plus feedforward controller. J. Process Control 14, 455–461 (2004)

    Article  Google Scholar 

  24. Visioli, A., Piazzi, A.: Improving set-point following performance of industrial controllers with a fast dynamic inversion algorithm. Ind. Eng. Chem. Res. 42, 1357–1362 (2003)

    Article  Google Scholar 

  25. Wallen, A.: Tools for autonomous process control. PhD thesis, Lund Institute of Technology, Lund (2000)

    Google Scholar 

  26. Wallen, A., Åström, K.J.: Pulse-step control. In: Proceedings 15th IFAC World Congress on Automatic Control, Barcelona, E, 2002

    Google Scholar 

  27. Zou, Q., Devasia, S.: Preview-based stable-inversion for output tracking of linear systems. ASME J. Dyn. Syst. Meas. Control 121, 625–630 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Visioli .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Visioli, A., Zhong, QC. (2011). Feedforward Control. In: Control of Integral Processes with Dead Time. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-070-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-070-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-069-4

  • Online ISBN: 978-0-85729-070-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics