Skip to main content

Dimensions of Self-affine Sets: A Survey

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

Self-affine sets may be expressed as unions of reduced scale affine copies of themselves. We survey general and specific constructions of self-affine sets and in particular the problem of finding or estimating their Hausdorff or box-counting dimensions. The structure and dimensional properties of self-affine sets are somewhat subtle, for example, their dimensions need not vary continuously in the defining transformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barański, K.: Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math. 210, 215–245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barański, K.: Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete Contin. Dyn. Syst. 21, 1015–1023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press Professional, Boston (1993)

    MATH  Google Scholar 

  5. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57, 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barral, J., Feng, D.-J.: Multifractal formalism for almost all self-affine measures, to appear, Comm. Math. Phys.

    Google Scholar 

  7. Barral, J., Mensi, M.: Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum. Ergodic Theory Dynam. Syst. 27, 1419–1443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barreira, L: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dynam. Syst. 16, 871–927 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barreira, L: Dimension estimates in nonconformal hyperbolic dynamics. Nonlinearity 16, 1657–1672 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barreira, L.: Thermodynamic Formalism and Applications to Dimension Theory. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  11. Barreira, L., Gelfert, K.: Dimension estimates in smooth dynamics: a survey of recent results. Ergodic Theory Dynam. Syst. 31, 641–671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bedford, T.: Crinkly curves, Markov partitions and box dimensions in self-similar sets. PhD thesis, University of Warwick (1984)

    Google Scholar 

  13. Bedford, T.: The box dimension of self-affine graphs and repellers. Nonlinearity 2, 53–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bedford, T., Urbański, M.: The box and Hausdorff dimension of self-affine sets. Ergodic Theory Dynam. Syst. 10, 627–644 (1990)

    Article  MATH  Google Scholar 

  15. Bowen, R.: Hausdorff dimension of quasi-circles. Publ. Math. IHES 50, 11–26 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Chen, J., Pesin, Y.: Dimension of non-conformal repellers: a survey. Nonlinearity 23, R93–R114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris Sr. A 290, 1135–1138 (1980)

    Google Scholar 

  18. Edgar, G.A.: Fractal dimension of self-affine sets: some examples. Rend. Circ. Mat. Palermo (2) Suppl. 28, 341–358 (1988)

    Google Scholar 

  19. Falconer, K.J.: The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103, 339–350 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Falconer, K.J.: The dimension of self-affine fractals II. Math. Proc. Cambridge Philos. Soc. 111, 169–179 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Falconer, K.J.: Bounded distortion and dimension for non-conformal repellers. Math. Proc. Cambridge Philos. Soc. 115, 315–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Falconer, K.J.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  23. Falconer, K.J.: Generalized dimensions of measures on self-affine sets. Nonlinearity 12, 877–891 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  25. Falconer, K.J.: Generalised dimensions of measures on almost self-affine sets. Nonlinearity 23, 1047–1069 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Falconer, K.J., Lammering, B.: Fractal properties of general Sirepiński triangles. Fractals 6, 31–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Falconer, K.J., Miao, J.: Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices. Fractals 15, 289–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Falconer, K.J., Miao, J.: Exceptional sets for self-affine fractals. Math. Proc. Cambridge Philos. Soc. 145, 669–684 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Falconer, K.J., Sloan, A.: Continuity of subadditive pressure for self-affine sets. R. Anal. Exchange 34, 413–428 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Feng, D.-J., Wang, Y.: A class of self-affine sets and self-affine measures. J. Fourier Anal. Appl. 11, 107–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fraser, J.M.: On the packing dimension of box-like self-affine sets in the plane, Nonlinearity 25, 2075–2092 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gatzouras, D., Lalley, S.P.: Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ. Math. J. 41, 533–568 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gatzouras, D., Peres, Y.: Invariant measures of full dimension for some expanding maps. Ergodic Theory Dynam. Syst. 17, 147–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hueter, I., Lalley, S.P.: Falconer’s formula for the Hausdorff dimension of a self-affine set in ℝ 2. Ergodic Theory Dynam. Syst. 15, 77–97 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jordan, T., Pollicott, M., Simon, K.: Hausdorff dimension for randomly perturbed self affine attractors. Commun. Math. Phys. 270, 519–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jordan, T., Rams, M.: Multifractal analysis for Bedford-McMullen carpets. Math. Proc. Cambridge Philos. Soc. 150, 147–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kenyon, R., Peres, Y.: Hausdorff dimensions of sofic affine-invariant sets. Israel J. Math. 94, 157–178 (1996)

    Article  MathSciNet  Google Scholar 

  39. King, J.F.: The singularity spectrum for general Sierpiński carpets. Adv. Math. 116, 1–11 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Käenmäki, A., Shmerkin, P.: Overlapping self-affine sets of Kakeya type. Ergodic Theory Dynam. Syst. 29, 941–965 (2009)

    Article  MATH  Google Scholar 

  41. Käenmäki, A., Vilppolainen, M.: Dimension and measures on sub-self-affine sets. Monatsh. Math. 161, 271–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kono, N.: On self-affine functions. Japan J. Appl. Math. 3, 259–269 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ledrappier, F.: On the dimension of some graphs. In: Symbolic Dynamics and Its Applications. Contemp. Math. vol. 135, pp. 285–293. Amer. Math. Soc., Providence (1992)

    Google Scholar 

  44. Luzia, N.: Hausdorff dimension for an open class of repellers in ℝ 2. Nonlinearity 19, 2895–2908 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Manning, A., Simon, K.: Subadditive pressure for triangular maps. Nonlinearity 20, 133–149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. McMullen, C.: The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96, 1–9 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Olsen, L.: Self-affine multifractal Sierpiński sponges in ℝ d. Pacific J. Math. 183, 143–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Olsen, L.: Symbolic and geometric local dimensions of self-affine multifractal Sierpiński sponges in ℝ d. Stoch. Dyn. 7, 37–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Peres, Y., Solomyak, B.: Problems on self-similar sets and self-affine sets: an update. In: Bandt, C., Graf, S., Zähle, M. (eds.) Fractal Geometry and Stochastics II. Progress in Probability, vol. 46, pp. 95–106. Birkhäuser, Basel (2000)

    Chapter  Google Scholar 

  50. Pesin, Y.B.: Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago (1997)

    Google Scholar 

  51. Pollicott, M., Weiss, H.: The dimensions of some self-affine limit sets in the plane. J. Stat. Phys. 77 (1994), 841–866.

    Article  MathSciNet  MATH  Google Scholar 

  52. Robinson, J.C.: Dimensions, Embeddings, and Attractors. Cambridge Tracts in Mathematics, vol. 186. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  53. Solomyak, B.: Measure and dimensions for some fractal families. Math. Proc. Cambridge Philos. Soc. 124, 531–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shmerkin, P.: Overlapping self-affine sets. Indiana Univ. Math. J. 55, 1291–1331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematical Sciences, vol. 68, 2nd edn. Springer, New York (1997)

    Google Scholar 

  56. Urbański, M.: The probability distribution and Hausdorff dimension of self-affine functions. Probab. Theory Related Fields 84, 377–391 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. Urbański, M.: The Hausdorff dimension of the graphs of continuous self-affine functions. Proc. Amer. Math. Soc. 108, 921–930 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Falconer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Falconer, K. (2013). Dimensions of Self-affine Sets: A Survey. In: Barral, J., Seuret, S. (eds) Further Developments in Fractals and Related Fields. Trends in Mathematics. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8400-6_6

Download citation

Publish with us

Policies and ethics