Three-Dimensional Plasma Arc Simulation Using Resistive MHD

Abstract

We propose a model for simulating the real gas, high current plasma arc in three dimensions based on the equations of resistive MHD. These model equations are discretized using Runge–Kutta Discontinuous Galerkin (RKDG) methods. The Nektar code is used for the simulation which is extended to include Runge–Kutta time stepping, accurate Riemann solvers, and real gas data. The model is then shown to be suitable for simulating a plasma arc by using it to generate a high current plasma arc. Furthermore, the model is used to investigate the effects of the external magnetic field on the arc. In particular, it is shown that the external magnetic field forces the plasma arc to rotate.

Keywords

Plasma arc Resistive Magnetohydrodynamics (MHD) Runge–Kutta Discontinuous Galerkin (RKDG) methods 

Notes

Acknowledgements

The authors would like to acknowledge C. Schwab, V. Wheatley, M. Torrilhon, and R. Hiptmair for their support and constructive discussions on this work. G.E. Karniadakis provided the authors with the original version of Nektar and ABB Baden provided real gas data for SF6 gas, which is gratefully acknowledged.

References

  1. 1.
    Schlitz, L.Z., Garimella, S.V., Chan, S.H.: Gas dynamics and electromagnetic processes in high-current arc plasmas. Part I: model formulation and steady state solutions. J. Appl. Phys. 85(5), 2540–2546 (1999) CrossRefGoogle Scholar
  2. 2.
    Schlitz, L.Z., Garimella, S.V., Chan, S.H.: Gas dynamics and electromagnetic processes in high-current arc plasmas. Part II: effects of external magnetic fields and gassing materials. J. Appl. Phys. 85(5), 2547–2555 (1999) CrossRefGoogle Scholar
  3. 3.
    Lindmayer, M.: Simulation of switching devices based on general transport equation. In: Int. Conference on Electrical Contacts, Zürich (2002) Google Scholar
  4. 4.
    Barcikowski, F., Lindmayer, M.: Simulations of the heat balance in low-voltage switchgear. In: Int. Conference on Electrical Contacts, Stockholm (2000) Google Scholar
  5. 5.
    Huguenot, P., Kumar, H., Wheatley, V., Jeltsch, R., Schwab, C.: Numerical simulations of high current arc in circuit breakers. In: 24th International Conference on Electrical Contacts (ICEC), Saint-Malo, France (2008) Google Scholar
  6. 6.
    Huguenot, P.: Axisymmetric high current arc simulations in generator circuit breakers based on real gas magnetohydrodynamics models. Diss., Eidgenössische Technische Hochschule, ETH, Zürich, No. 17625 (2008) Google Scholar
  7. 7.
    Kumar, H.: Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. Diss., Eidgenössische Technische Hochschule, ETH, Zürich, No. 18460 (2009) Google Scholar
  8. 8.
    Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  9. 9.
    Hill, T.R., Reed, W.H.: Triangular mesh methods for neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Google Scholar
  10. 10.
    Cockburn, B.: Advanced numerical approximation of nonlinear hyperbolic equations. In: An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems. Lecture Notes in Mathematics, pp. 151–268. Springer, Berlin (1998) Google Scholar
  11. 11.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order(hp) finite element methods. Int. J. Numer. Methods Eng. 123, 3775–3802 (1995) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005) MATHCrossRefGoogle Scholar
  14. 14.
    Lin, G., Karniadakis, G.E.: A discontinuous Galerkin method for two-temperature plasmas. Comput. Methods Appl. Mech. Eng. 195, 3504–3527 (2006) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Wheatley, V., Kumar, H., Huguenot, P.: On the role of Riemann solvers in discontinuous Galerkin methods for magnetohydrodynamics. J. Comput. Phys. 229, 660–680 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Warburton, T.C., Karniadakis, G.E.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Shu, C.W.: TVD time discretizations. SIAM J. Math. Anal. 14, 1073–1084 (1988) Google Scholar
  19. 19.
    Cockburn, B., Shu, C.W.: The Runge–Kutta local projection p 1-discontinuous Galerkin method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991) MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.ETH ZürichZurichSwitzerland
  2. 2.INRIABordeauxFrance

Personalised recommendations