Skip to main content

Quantification of Retinal Chromophores Through Autofluorescence Imaging to Identify Precursors of Age-Related Macular Degeneration

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1543 Accesses

Abstract

Agerelated macular degeneration is a common disease that impairs central vision. To better understand early disease progression, we quantified two families of retinal chromophores: macular pigments in retinal axons and rod photoreceptor rhodopsin, whose changes have been associated with age-related maculopathy progression. First, we introduced noninvasive multispectral fluorescence imaging of the human retina and quantified macular pigments from those multispectral image sets. Second, we modeled the brightening of the lipofuscin autofluorescence in confocal scanning laser ophthalmoscopy imaging sequences to map local rod rhodopsin density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless stated otherwise, images were derived from NEI cameras or modified from resources at the National Eye Institute (NEI) or the Canadian National Institute for the Blind (CNIB).

References

  1. Alpern, M., Pugh, E.N. Jr.: The density and photosensitivity of human rhodopsin in the living retina. J. Physiol. 237, 341–370 (1974)

    Google Scholar 

  2. Bird, A.C., Bressler, N.M., Bressler, S.B., Chisholm, I.H., Coscas, G., Davis, M.D., de Jong, P.T., Klaver, C.C., Klein, B.E., Klein, R.: An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM epidemiological study group. Surv.  Ophthalmol. 39(5), 367–374 (1995)

    Google Scholar 

  3. Cameron, A.M., Miao, L., Ruseckaite, R., Pianta, M.J., Lamb, T.D.: Dark adaptation recovery of human rod bipolar cell response kinetics estimated from scotopic b-wave measurements. J.  Physiol. 586(Pt 22), 5419–5436 (2008)

    Google Scholar 

  4. Chew, E.Y., Lindblad, A.S., Clemons, T., and Age-Related Eye Disease Study Research Group. Summary results and recommendations from the age-related eye disease study. Arch.  Ophthalmol. 127(12), 1678–1679 (2009)

    Google Scholar 

  5. Coleman, H.R., Chan, C., Ferris, F.L., Chew, E. Y.: Age-related macular degeneration. Lancet 372(9652), 1835–1845 (2008)

    Google Scholar 

  6. Cunningham, D., Caruso, R.C., Ferris, F.L.: Case report: Retinal bleaching during fundus autofluorescence using a confocal scanning laser ophthalmoscope. J. Ophthalmic Photogr. 29, 93–94 (2007)

    Google Scholar 

  7. Dobrosotskaya, J., Ehler, M., et al.: Sparse representation and variational methods in retinal image processing. In: International Federation for Medical & Biological Engineering. Springer Proceedings Series. 26th Southern Biomedical Engineering Conference. Springer, Berlin (2010)

    Google Scholar 

  8. Dobrosotskaya, J., Ehler, M., et al.: Modeling of the rhodopsin bleaching with variational analysis of retinal images. SPIE Medical Imaging (2011)

    Google Scholar 

  9. Ehler, M., Majumdar, Z., et al.: High-resolution autofluorescence imaging for mapping molecular processes within the human retina. In: International Federation for Medical & Biological Engineering, Springer Proceedings Series. 26th Southern Biomedical Engineering Conference, Springer, Berlin (2010)

    Google Scholar 

  10. Ehler, M., Kainerstorfer, J., Cunningham, D., et al.: Extended correction model for optical imaging. In: IEEE International Conference on Computational Advances in Bio and Medical Sciences, pp. 93–98 (2011)

    Google Scholar 

  11. Ehler, M., Dobrosotskaya, J., et al.: Modeling photo-bleaching kinetics to map local variations in rod rhodopsin density. SPIE Medical Imaging, Computer-Aided Diagnosis 7963(2011)

    Google Scholar 

  12. Ehler, M., Dobrosotskaya, J., King, E., Czaja, W., Bonner, R.F.: Modeling photo-bleaching kinetics to create high resolution maps of rod rhodopsin in the human retina. preprint (2012)

    Google Scholar 

  13. Delori, F.C., et al.: Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J.  Opt.  Soc.  Am.  A.  Opt.  Image Sci.  Vis. 18(6), 1212–1230 (2001)

    Google Scholar 

  14. Gloster, J., Greaves, D.P.: A study of bleaching of the fundus oculi in pigmentary degenerations of the retina. Br.  J.  Ophthalmol. 48, 260–73 (1964)

    Google Scholar 

  15. Jackson, G.R., Owsley, C., McGwin, G. Jr.: Aging and dark adaptation. Vision Res. 39(23), 3975–3982 (1999)

    Google Scholar 

  16. McGwin, G. Jr., Jackson, G.R., Owsley, C.: Using nonlinear regression to estimate parameters of dark adaptation. Behav.  Res.  Methods Instrum.  Comput. 31(4), 712–717 (1999)

    Google Scholar 

  17. Kainerstorfer, J., Amyot, F., Ehler, M., et al.: Direct curvature correction for non-contact imaging modalities—applied to multi-spectral imaging. J.  Biomed.  Opt. (2010)

    Google Scholar 

  18. Kainerstorfer, J., Ehler, M., et. al.: Principal component model of multi spectral data for near real-time skin chromophore mapping. J.  Biomed.  Opt. 15(2010)

    Google Scholar 

  19. Kainerstorfer, J., Riley, J.D., Ehler, M., et al.: Quantitative principal component model for skin chromophore mapping using multi spectral images and spatial priors. Biomed. Opt. Exp., 2(5), 1040–1058 (2011)

    Google Scholar 

  20. Krishnadev, N., Meleth, A.D., Chew, E.Y.: Nutritional supplements for age-related macular degeneration. Curr.  Opin.  Ophthalmol. 21(3), 184–9 (2010)

    Google Scholar 

  21. Lamb, T.D., Pugh, E.N. Jr.: Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest.  Ophthalmol.  Vis.  Sci. 47(12), 5137–52 (2006)

    Google Scholar 

  22. Lyubarsky, A.L., Daniele, L.L., Pugh, E.N. Jr.: From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse erg. Vision Res. 44(28), 3235–3251 (2004)

    Google Scholar 

  23. Mahroo, O.A.R., Lamb, T.D.: Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics. J.  Physiol. 554(Pt 2), 417–437 (2004)

    Google Scholar 

  24. Meyers, S.M., Ostrovsky, M.A., Bonner, R.F.: A model of spectral filtering to reduce photochemical damage in age-related macular degeneration. Trans.  Am.  Ophthalmol.  Soc. 102, 83–93; discussion 93–95 (2004)

    Google Scholar 

  25. Rushton, W.A.H., Powell, D.S.: The rhodopsin content and the visual threshold of human rods. Vision Res. 12, 1073–1081 (1972)

    Google Scholar 

  26. Sandberg, M.A., Weigel-DiFranco, C., Rosner, B., Berso, E.L.: The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Invest.  Ophthalmol.  Vis.  Sci. 37(8), 1693–1698 (1996)

    Google Scholar 

  27. Theelen, T., Berendschot, T.T.J.M., Boon, C.J.F., Hoyng, C.B., Klevering, B.J.: Analysis of visual pigment by fundus autofluorescence. Exp.  Eye Res. 86(2), 296–304 (2008)

    Google Scholar 

  28. Thomas, M.M., Lamb, T.D.: Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. J.  Physiol. 518(Pt 2), 479–496 (1999)

    Google Scholar 

  29. U.S. Department of Agriculture: USDA National Nutrient Database for Standard Reference, Release 24. Agricultural Research Service (2011)

    Google Scholar 

Download references

Acknowledgment

The research was funded by intramural research funds from the National Institute of Child Health and Human Development, National Institutes of Health. M. E. is supported by the NIH/DFG Research Career Transition Awards Program (EH 405/1-1/575910). J.D. was supported by NSF (CBET0854233). E.J.K. is supported by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Ehler, M., Dobrosotskaya, J., King, E.J., Bonner, R.F. (2013). Quantification of Retinal Chromophores Through Autofluorescence Imaging to Identify Precursors of Age-Related Macular Degeneration. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8379-5_18

Download citation

Publish with us

Policies and ethics