Skip to main content

Enhancement and Recovery in Atomic Force Microscopy Images

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Atomic force microscopy (AFM) images have become increasingly useful in the study of biological, chemical, and physical processes at the atomic level. The acquisition of AFM images takes more time than the acquisition of most optical images, so that the avoidance of unnecessary scanning becomes important. Details that are unclear from a scan may be enhanced using various image processing techniques. This chapter reviews various interpolation and inpainting methods and considers them in the specific application of AFM images. Lower-resolution AFM data is simulated by subsampling the number of scan lines in an image, and reconstruction methods are used to recreate an image on the original domain. The methods considered are classified in the categories of linear interpolation, nonlinear interpolation, and inpainting. These techniques are evaluated based on qualitative and quantitative measures, showing the extent to which scan times can be reduced while preserving the essence of the original features. A further application is in the removal of streaks, which can occur due to scanning errors and post-processing corrections. Identified streaks are removed, and the resulting unknown region is filled using inpainting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Miyagi, A., Taniguchi, M., Yamashita, H.: High-speed AFM and nano-visualization of biomolecular processes. In: Pflügers Archive European Journal of Physiology, vol. 456, pp. 211–225. Springer, Berlin (2008)

    Google Scholar 

  2. Ashby, P., Lieber, C.: Ultra-sensitive imaging and interfacial analysis of patterned hydrophilic SAM surfaces using energy dissipation chemical force microscopy. J. Am. Chem. Soc. 127, 6814–6818 (2005)

    Article  Google Scholar 

  3. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bertozzi, A.L., Greer, J.B.: Low curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Comm. Pure Appl. Math. 57(6), 764–790 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binnig, G., Quate, C., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  6. Chan, T., Kang, S., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Chan, T., Shen, J.: Communications on Pure and Applied Mathematics. 58(5), 579–619 (2005)

    Google Scholar 

  8. Chasiotis, I.: Atomic force microscopy in solid mechanics. In: Sharpe, W.N. Jr. (ed.) Springer Handbook of Experimental Solid Mechanics, pp. 409–443. Springer, New York (2008)

    Chapter  Google Scholar 

  9. Darbon, J., Lefebvre, S., Chan, T., Esedoglu, S.: TV optimization and graph-cuts. Proc. Appl. Math. Mech. 7(1), 1042,303–1042,304 (2007)

    Google Scholar 

  10. Dobrosotskaya, J., Bertozzi, A.: A wavelet-laplace variational technique for image deconvolution and inpainting. IEEE Trans. Image Process. 17(5), 657–663 (2008)

    Article  MathSciNet  Google Scholar 

  11. Esedoglu, S.: Blind deconvolution of bar code signals. Inverse Probl. 20, 121–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Florin, E., Moy, V., Gaub, H.: Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994)

    Article  Google Scholar 

  13. Getreuer, P.: Contour stencils for edge-adaptive image interpolation. In: Proc. SPIE, vol. 7246 (2009)

    Google Scholar 

  14. Getreuer, P.: Image zooming with contour stencils. In: Proc. SPIE, vol. 7257 (2009)

    Google Scholar 

  15. Goldstein, T., Osher, S.: The split Bregman algorithm for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Greer, J.B., Bertozzi, A.L.: Traveling wave solutions of fourth order PDEs for image processing. SIAM J. Math. Anal. 36(1), 38–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansma, P., Cleveland, J., Radmacher, M., Walters, D., Hillner, P., Bezanilla, M., Fritz, M., Vie, D., Hansma, H., Prater, C., Massie, J., Fukunaga, L., Gurley, J., Elings, V.: Tapping mode atomic force microscopy in liquids. Surface Sci. Lett. 64(13), 1738–1740 (1994)

    Google Scholar 

  18. Kodera, N., Yamamoto, D., Ishikawa, R., Ando, T.: Video imaging of walking myosin v by high-speed atomic force microscopy. Nature 468, 72–76 (2010)

    Article  Google Scholar 

  19. Lapshin, R.V.: Feature-oriented scanning methodology for probe microscopy and nanotechnology. Nanotechnol. 15, 1135–1151 (2004)

    Article  Google Scholar 

  20. Martin, Y., Wickramasinghe, H.: Magnetic imaging by “force microscopy” with 1000 å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)

    Article  Google Scholar 

  21. Morel, J., Yu, G.: Is SIFT scale invariant? Inverse Probl. Imag. 5(1), 115–136 (2011)

    Article  MATH  Google Scholar 

  22. Noy, A., Vezenov, D., Kayyem, J., Meade, T., Lieber, C.: Stretching and breaking duplex DNA by chemical force microscopy. Chem. Biol. 4, 519–527 (1997)

    Article  Google Scholar 

  23. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  24. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  25. Schoenlieb, C.B., Bertozzi, A.: Unconditionally stable schemes for higher order inpainting. Comm. Math. Sci. 9(2), 413–457 (2011)

    MATH  Google Scholar 

  26. Thévenaz, P., Blu, T., Unser, M.: Image interpolation and resampling. In: Handbook of Medical Imaging. Academic, Orlando (2000)

    Google Scholar 

  27. Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Siggraph, Computer Graphics Proceedings, pp. 83–90 (1999)

    Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Zhong, Q., Innis, D., Kjolle, K.: Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Sci. Lett. 290, L688–L692 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Todd Wittman, Jef Huang, and Kevin Thompson for useful conversations on the AFM and inpainting. This research is supported by NSF grant CBET-0940417. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Image of lipid bilayer domain sample provided by Elaine DeMasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Bertozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Chen, A., Bertozzi, A.L., Ashby, P.D., Getreuer, P., Lou, Y. (2013). Enhancement and Recovery in Atomic Force Microscopy Images. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8379-5_16

Download citation

Publish with us

Policies and ethics