Skip to main content

Smooth Interpolation of Data by Efficient Algorithms

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 1

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In 1934, Whitney (Trans. Am. Math. Soc. 36:63–89, 1934; Trans. Am. Math. Soc. 36:369–389, 1934; Ann. Math. 35:482–485, 1934) posed several basic questions on smooth extension of functions. Those questions have been answered in the last few years, thanks to the work of Bierstone et al. (Inventiones Math. 151(2):329–352, 2003), Brudnyi and Shvartsman (Int. Math. Res. Notices 3:129–139, 1994; J. Geomet. Anal. 7(4):515–574, 1997), Fefferman (Ann. Math. 161:509–577, 2005; Ann. Math. 164(1):313–359, 2006; Ann. Math. 166(3):779–835, 2007) and Glaeser (J. d’ Analyse Math. 6:1–124, 1958). The solution of Whitney’s problems has led to a new algorithm for interpolation of data, due to Fefferman and Klartag (Ann. Math. 169:315–346, 2009; Rev. Mat. Iberoam. 25:49–273, 2009). The new algorithm is theoretically best possible, but far from practical. We hope it can be modified to apply to practical problems. In this expository chapyer, we briefly review Whitney’s problems, then formulate carefully the problem of interpolation of data. Next, we state the main results of Fefferman and Klartag (Ann. Math. 169:315–346, 2009; Rev. Mat. Iberoam. 25:49–273, 2009) on efficient interpolation. Finally, we present some of the ideas in the proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is perhaps natural to use two different positive numbers \({M}_{1},{M}_{2}\) in the two inequalities in (1). However, since we are free to multiply \(\sigma (x)\) by our favorite positive constant, we lose no generality in taking a single M.

  2. 2.

    This unrealistic model of computation is subject to serious criticism[15]. In Fefferman\(\textendash \)Klartag[10, 11], we make a rigorous analysis of the roundoff error. That analysis is omitted in this expository chapter for the sake of simplicity.

  3. 3.

    For the rest of this chapter, whenever we refer to Theorem 5, we mean the generalized version in which the \({\Gamma }_{\mathcal{l}}\) are not specified, but merely assumed to satisfy a list of key properties.

References

  1. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach. 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bierstone, E., Milman, P., Pawłucki, W.: Differentiable functions defined on closed sets, A problem of Whitney. Inventiones Math. 151 (2), 329–352 (2003)

    Article  MATH  Google Scholar 

  3. Brudnyi, Y., Shvartsman, P.: Generalizations of Whitney’s extension theorem. Int. Math. Res. Notices 3, 129–139 (1994)

    Article  MathSciNet  Google Scholar 

  4. Brudnyi, Y., Shvartsman, P.: The Whitney problem of existence of a linear extension operator. J. Geomet. Anal. 7(4), 515–574 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Callahan, P.B., Kosaraju, S.R.: A decomposition of multi-dimensional point sets with applications to k-nearest neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42(1), 67–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fefferman, C.: A sharp form of Whitney’s extension theorem. Ann. Math. 161, 509–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fefferman, C.: Whitney’s extension problem for C m. Ann. Math. 164(1), 313–359 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fefferman, C.: C m extension by linear operators. Ann. Math. 166(3), 779–835 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fefferman, C.: Whitney’s extension problems and interpolation of data. Bull. Am. Math. Soc. 46(2), 207–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, C., Klartag, B.: Fitting a C m-smooth function to data I. Ann. Math. 169(1), 315–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fefferman, C., Klartag, B.: Fitting a C m-smooth function to data II. Rev. Mat. Iberoam. 25(1), 49–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glaeser, G.: Etudes de quelques algebres tayloriennes. J. d’Analyse Math. 6, 1–124 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marcinkiewicz, J.: Sur les series de Fourier. Fund. Math. 27, 38–69 (1936)

    Google Scholar 

  15. Schönhage, A.: On the power of random access machines. In: Proceedings 6th International Colloquium, on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 71, pp. 520–529. Springer, London (1979)

    Google Scholar 

  16. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

C. Fefferman was Supported by NSF Grant No. DMS-09-01-040 and ONR Grant No. N00014-08-1-0678. The author is grateful to Frances Wroblewski for TeXing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fefferman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Fefferman, C. (2013). Smooth Interpolation of Data by Efficient Algorithms. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8376-4_4

Download citation

Publish with us

Policies and ethics