Finite Frames pp 267-302 | Cite as

Quantization and Finite Frames

  • Alexander M. Powell
  • Rayan Saab
  • Özgür Yılmaz
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Frames are a tool for providing stable and robust signal representations in a wide variety of pure and applied settings. Frame theory uses a set of frame vectors to discretely represent a signal in terms of its associated collection of frame coefficients. Dual frames and frame expansions allow one to reconstruct a signal from its frame coefficients—the use of redundant or overcomplete frames ensures that this process is robust against noise and other forms of data loss. Although frame expansions provide discrete signal decompositions, the frame coefficients generally take on a continuous range of values and must also undergo a lossy step to discretize their amplitudes so that they may be amenable to digital processing and storage. This analog-to-digital conversion step is known as quantization. We shall give a survey of quantization for the important practical case of finite frames and shall give particular emphasis to the class of Sigma-Delta algorithms and the role of noncanonical dual frame reconstruction.

Keywords

Digital signal representations Noncanonical dual frame Quantization Sigma-Delta quantization Sobolev duals 

Notes

Acknowledgements

The authors thank Sinan Güntürk, Mark Lammers, and Thao Nguyen for valuable discussions and collaborations on frame theory and quantization.

A. Powell was supported in part by NSF DMS Grant 0811086 and also gratefully acknowledges the hospitality and support of the Academia Sinica Institute of Mathematics (Taipei, Taiwan).

R. Saab was supported by a Banting Postdoctoral Fellowship, administered by the Natural Science and Engineering Research Council of Canada.

Ö. Yılmaz was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). He was also supported in part by the NSERC CRD Grant DNOISE II (375142-08). Finally, Yılmaz acknowledges the Pacific Institute for the Mathematical Sciences (PIMS) for supporting a CRG in Applied and Computational Harmonic Analysis.

References

  1. 1.
    Benedetto, J.J., Oktay, O.: Pointwise comparison of PCM and ΣΔ quantization. Constr. Approx. 32, 131158 (2010) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Sigma-Delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory 52, 1990–2005 (2006) CrossRefGoogle Scholar
  3. 3.
    Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Second order Sigma-Delta quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20, 126–148 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bennett, W.R.: Spectra of quantized signals. AT&T Tech. J. 27(3), 446–472 (1947) Google Scholar
  5. 5.
    Blum, J., Lammers, M., Powell, A.M., Yılmaz, Ö.: Sobolev duals in frame theory and Sigma-Delta quantization. J. Fourier Anal. Appl. 16, 365–381 (2010) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Blum, J., Lammers, M., Powell, A.M., Yılmaz, Ö.: Errata to: Sobolev duals in frame theory and Sigma-Delta quantization. J. Fourier Anal. Appl. 16, 382 (2010) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bodmann, B., Lipshitz, S.: Randomly dithered quantization and Sigma-Delta noise shaping for finite frames. Appl. Comput. Harmon. Anal. 25, 367–380 (2008) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bodmann, B., Paulsen, V.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bodmann, B., Paulsen, V.: Frame paths and error bounds for Sigma-Delta quantization. Appl. Comput. Harmon. Anal. 22, 176–197 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bodmann, B., Paulsen, V., Abdulbaki, S.: Smooth frame-path termination for higher order Sigma-Delta quantization. J. Fourier Anal. Appl. 13, 285–307 (2007) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Borodachov, S., Wang, Y.: Lattice quantization error for redundant representations. Appl. Comput. Harmon. Anal. 27, 334341 (2009) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boufounos, P., Oppenheim, A.: Quantization noise shaping on arbitrary frame expansions. EURASIP J. Appl. Signal Process., Article ID 53807 (2006), 12 pp. Google Scholar
  13. 13.
    Buhler, J., Shokrollahi, M.A., Stemann, V.: Fast and precise Fourier transforms. IEEE Trans. Inf. Theory 46, 213–228 (2000) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Casazza, P., Dilworth, S., Odell, E., Schlumprecht, T., Zsak, A.: Coefficient quantization for frames in Banach spaces. J. Math. Anal. Appl. 348, 66–86 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Casazza, P., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18, 387–430 (2003) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Christensen, O., Goh, S.S.: Pairs of oblique duals in spaces of periodic functions. Adv. Comput. Math. 32, 353–379 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Christensen, O., Kim, H.O., Kim, R.Y.: Gabor windows supported on [−1,1] and compactly supported dual windows. Appl. Comput. Harmon. Anal. 28, 89–103 (2010) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Christensen, O., Sun, W.: Explicitly given pairs of dual frames with compactly supported generators and applications to irregular B-splines. J. Approx. Theory 151, 155–163 (2008) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Cvetkovic, Z.: Resilience properties of redundant expansions under additive noise and quantization. IEEE Trans. Inf. Theory 49, 644–656 (2003) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Cvetkovic, Z., Vetterli, M.: On simple oversampled A/D conversion in L 2(ℝ). IEEE Trans. Inf. Theory 47, 146–154 (2001) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Daubechies, I., DeVore, R.: Approximating a bandlimited function using very coarsely quantized data: a family of stable Sigma-Delta modulators of arbitrary order. Ann. Math. 158, 679–710 (2003) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Daubechies, I., DeVore, R.A., Güntürk, C.S., Vaishampayan, V.A.: A/D conversion with imperfect quantizers. IEEE Trans. Inf. Theory 52, 874–885 (2006) MATHCrossRefGoogle Scholar
  23. 23.
    Daubechies, I., Landau, H., Landau, Z.: Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl. 1, 437–478 (1995) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Deift, P., Güntürk, C.S., Krahmer, F.: An optimal family of exponentially accurate one-bit Sigma-Delta quantization schemes. Commun. Pure Appl. Math. 64, 883–919 (2011) MATHCrossRefGoogle Scholar
  25. 25.
    Deshpande, A., Sarma, S.E., Goyal, V.K.: Generalized regular sampling of trigonometric polynomials and optimal sensor arrangement. IEEE Signal Process. Lett. 17, 379–382 (2010) CrossRefGoogle Scholar
  26. 26.
    Dilworth, S., Odell, E., Schlumprecht, T., Zsak, A.: Coefficient quantization in Banach spaces. Found. Comput. Math. 8, 703–736 (2008) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Eldar, Y., Christensen, O.: Characterization of oblique dual frame pairs. EURASIP J. Appl. Signal Process., Article ID 92674 (2006), 11 pp. Google Scholar
  28. 28.
    Games, R.A.: Complex approximations using algebraic integers. IEEE Trans. Inf. Theory 31, 565–579 (1985) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Goyal, V., Kovačević, J., Kelner, J.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Goyal, V., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in ℝN: analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44, 16–31 (1998) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Gray, R., Stockham, T.: Dithered quantizers. IEEE Trans. Inf. Theory 39, 805–812 (1993) MATHCrossRefGoogle Scholar
  32. 32.
    Güntürk, C.S.: One-bit Sigma-Delta quantization with exponential accuracy. Commun. Pure Appl. Math. 56, 1608–1630 (2003) MATHCrossRefGoogle Scholar
  33. 33.
    Güntürk, C.S.: Approximating a bandlimited function using very coarsely quantized data: improved error estimates in Sigma-Delta modulation. J. Am. Math. Soc. 17, 229242 (2004) CrossRefGoogle Scholar
  34. 34.
    Güntürk, C.S., Lammers, M., Powell, A.M., Saab, R., Yılmaz, Ö.: Sobolev duals for random frames and Sigma-Delta quantization of compressed sensing measurements, preprint (2010) Google Scholar
  35. 35.
    Güntürk, C.S., Lammers, M., Powell, A.M., Saab, R., Yılmaz, Ö.: Sigma Delta quantization for compressed sensing. In: 44th Annual Conference on Information Sciences and Systems, Princeton, NJ, March (2010) Google Scholar
  36. 36.
    Güntürk, C.S., Lammers, M., Powell, A.M., Saab, R., Yılmaz, Ö.: Sobolev duals of random frames. In: 44th Annual Conference on Information Sciences and Systems, Princeton, NJ, March (2010) Google Scholar
  37. 37.
    Güntürk, C.S., Thao, N.: Ergodic dynamics in Sigma-Delta quantization: tiling invariant sets and spectral analysis of error. Adv. Appl. Math. 34, 523–560 (2005) MATHCrossRefGoogle Scholar
  38. 38.
    Inose, H., Yasuda, Y.: A unity bit coding method by negative feedback. Proc. IEEE 51, 1524–1535 (1963) CrossRefGoogle Scholar
  39. 39.
    Jimenez, D., Wang, L., Wang, Y.: White noise hypothesis for uniform quantization errors. SIAM J. Math. Anal. 28, 2042–2056 (2007) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Krahmer, F., Saab, R., Ward, R.: Root-exponential accuracy for coarse quantization of finite frame expansions. IEEE Trans. Inf. Theory 58, 1069–1079 (2012) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Lammers, M., Maeser, A.: An uncertainty principle for finite frames. J. Math. Anal. Appl. 373, 242247 (2011) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Lammers, M., Powell, A.M., Yılmaz, Ö.: Alternative dual frames for digital-to-analog conversion in Sigma-Delta quantization. Adv. Comput. Math. 32, 73–102 (2010) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Li, S., Ogawa, H.: Optimal noise suppression: a geometric nature of pseudoframes for subspaces. Adv. Comput. Math. 28, 141–155 (2008) MathSciNetCrossRefGoogle Scholar
  44. 44.
    Li, S., Ogawa, H.: Pseudo-duals of frames with applications. Appl. Comput. Harmon. Anal. 11, 289–304 (2001) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Norsworthy, S., Schreier, R., Temes, G. (eds.): Delta-Sigma Data Converters. IEEE Press, New York (1997) Google Scholar
  46. 46.
    Powell, A.M.: Mean squared error bounds for the Rangan-Goyal soft thresholding algorithm. Appl. Comput. Harmon. Anal. 29, 251–271 (2010) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Powell, A.M., Tanner, J., Yılmaz, Ö., Wang, Y.: Coarse quantization for random interleaved sampling of bandlimited signals. ESAIM, Math. Model. Numer. Anal. 46, 605–618 (2012) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Powell, A.M., Whitehouse, J.T.: Consistent reconstruction error bounds, random polytopes and coverage processes, preprint (2011) Google Scholar
  49. 49.
    Rangan, S., Goyal, V.: Recursive consistent estimation with bounded noise. IEEE Trans. Inf. Theory 47, 457–464 (2001) MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Thao, N.: Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates. IEEE Trans. Signal Process. 42, 519–531 (1994) CrossRefGoogle Scholar
  51. 51.
    Thao, N., Vetterli, M.: Reduction of the MSE in R-times oversampled A/D conversion from Open image in new window to Open image in new window. IEEE Trans. Signal Process. 42, 200–203 (1994) CrossRefGoogle Scholar
  52. 52.
    Wang, Y.: Sigma-Delta quantization errors and the traveling salesman problem. Adv. Comput. Math. 28, 101118 (2008) CrossRefGoogle Scholar
  53. 53.
    Wang, Y., Xu, Z.: The performance of PCM quantization under tight frame representations, preprint (2011) Google Scholar
  54. 54.
    Yılmaz, Ö.: Stability analysis for several second-order Sigma-Delta methods of coarse quantization of bandlimited functions. Constr. Approx. 18, 599–623 (2002) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexander M. Powell
    • 1
  • Rayan Saab
    • 2
  • Özgür Yılmaz
    • 3
  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA
  3. 3.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations