Skip to main content

Algebraic Geometry and Finite Frames

  • Chapter
Finite Frames

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Interesting families of finite frames often admit characterizations in terms of algebraic constraints, and thus it is not entirely surprising that powerful results in finite frame theory can be obtained by utilizing tools from algebraic geometry. In this chapter, our goal is to demonstrate the power of these techniques. First, we demonstrate that algebro-geometric ideas can be used to explicitly construct local coordinate systems that reflect intuitive degrees of freedom within spaces of finite unit norm tight frames (and more general spaces), and that optimal frames can be characterized by useful algebraic conditions. In particular, we construct locally well-defined real-analytic coordinate systems on spaces of finite unit norm tight frames, and we demonstrate that many types of optimal Parseval frames are dense and that further optimality can be discovered through embeddings that naturally arise in algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balan, R.V.: Equivalence relations and distances between Hilbert frames. Proc. Am. Math. Soc. 127, 2353–2366 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balan, R.V., Casazza, P.G., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18, 357–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Cahill, J.: Flags, frames, and Bergman spaces. Master’s Thesis, San Francisco State University (2009)

    Google Scholar 

  6. Cahill, J., Casazza, P.G.: The Paulsen problem in operator theory (2011). arXiv:1102.2344

  7. Casazza, P.G., Leon, M.T.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63, 149–158 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Casazza, P.G., Tremain, J.C.: The Kadison–Singer problem in mathematics and engineering. Proc. Natl. Acad. Sci. 103, 2032–2039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure Appl. Math. 28, 217–256 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Fraenkel, A.S., Yesha, Y.: Complexity of problems in games, graphs, and algebraic equations. Discrete Appl. Math. 1, 15–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fulton, W.: Young Tableaux—With Applications to Representation Theory and Geometry. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Guillemin, V., Pollack, A.: Differential Topology—History, Theory, and Applications. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  13. Hartshorne, R.: Algebraic Geometry. Springer, New York (1997)

    Google Scholar 

  14. Jiang, S.: Angles between Euclidean subspaces. Geom. Dedic. 63, 113–121 (1996)

    Article  MATH  Google Scholar 

  15. Jordan, C.: Essai sur la géométrie á n dimensions. Bull. Soc. Math. Fr. 3, 103–174 (1875)

    MATH  Google Scholar 

  16. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem—History, Theory, and Applications. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  17. Miao, J.M., Ben-Israel, A.: On principal angles between subspaces in ℝn. Linear Algebra Appl. 171, 81–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miao, J.M., Ben-Israel, A.: Product cosines of angles between subspaces. Linear Algebra Appl, 237–238:71–81 (1996)

    Google Scholar 

  19. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  20. Püschel, M., Kovačević, J.: Real tight frames with maximal robustness to erasures. In: Proc. IEEE Data Comput. Conf., pp. 63–72 (2005)

    Google Scholar 

  21. Strawn, N.: Finite frame varieties: nonsingular points, tangent spaces, and explicit local parameterizations. J. Fourier Anal. Appl. 17, 821–853 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weaver, N.: The Kadison–Singer problem in discrepancy theory. Discrete Math. 278, 227–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nate Strawn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cahill, J., Strawn, N. (2013). Algebraic Geometry and Finite Frames. In: Casazza, P., Kutyniok, G. (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8373-3_4

Download citation

Publish with us

Policies and ethics