Skip to main content

Spanning and Independence Properties of Finite Frames

  • Chapter
Finite Frames

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 2542 Accesses

Abstract

The fundamental notion of frame theory is redundancy. It is this property which makes frames invaluable in so many diverse areas of research in mathematics, computer science, and engineering, because it allows accurate reconstruction after transmission losses, quantization, the introduction of additive noise, and a host of other problems. This issue also arises in a number of famous problems in pure mathematics such as the Bourgain-Tzafriri conjecture and its many equivalent formulations. As such, one of the most important problems in frame theory is to understand the spanning and independence properties of subsets of a frame. In particular, how many spanning sets does our frame contain? What is the smallest number of linearly independent subsets into which we can partition the frame? What is the least number of Riesz basic sequences that the frame contains with universal lower Riesz bounds? Can we partition a frame into subsets which are nearly tight? This last question is equivalent to the infamous Kadison–Singer problem. In this section we will present the state of the art on partitioning frames into linearly independent and spanning sets. A fundamental tool here is the famous Rado-Horn theorem. We will give a new recent proof of this result along with some nontrivial generalizations of the theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexeev, B., Cahill, J., Mixon, D.G.: Full spark frames, preprint

    Google Scholar 

  2. Balan, R.: Equivalence relations and distances between Hilbert frames. Proc. Am. Math. Soc. 127(8), 2353–2366 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodmann, B.G., Casazza, P.G.: The road to equal-norm Parseval frames. J. Funct. Anal. 258(2), 397–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodmann, B.G., Casazza, P.G., Paulsen, V.I., Speegle, D.: Spanning and independence properties of frame partitions. Proc. Am. Math. Soc. 40(7), 2193–2207 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bodmann, B.G., Casazza, P.G., Kutyniok, G.: A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal. 30, 348–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Λ p -Sets in Analysis: Results, Problems and Related Aspects. Handbook of the Geometry of Banach Spaces, vol. I, pp. 195–232. North-Holland, Amsterdam (2001)

    Google Scholar 

  7. Cahill, J.: Flags, frames, and Bergman spaces. M.S. Thesis, San Francisco State University (2010)

    Google Scholar 

  8. Casazza, P.G.: Custom building finite frames. In: Wavelets, Frames and Operator Theory, College Park, MD, 2003. Contemp. Math., vol. 345, pp. 61–86. Am. Math. Soc., Providence (2004)

    Chapter  Google Scholar 

  9. Casazza, P., Christensen, O., Lindner, A., Vershynin, R.: Frames and the Feichtinger conjecture. Proc. Am. Math. Soc. 133(4), 1025–1033 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casazza, P.G., Fickus, M., Weber, E., Tremain, J.C.: The Kadison–Singer problem in mathematics and engineering—a detailed account. In: Han, D., Jorgensen, P.E.T., Larson, D.R. (eds.) Operator Theory, Operator Algebras and Applications. Contemp. Math., vol. 414, pp. 297–356 (2006)

    Google Scholar 

  11. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casazza, P., Kutyniok, G.: A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Adv. Comput. Math. 18, 65–78 (2007)

    Article  MathSciNet  Google Scholar 

  13. Casazza, P.G., Kutyniok, G., Speegle, D.: A redundant version of the Rado-Horn theorem. Linear Algebra Appl. 418, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casazza, P.G., Kutyniok, G., Speegle, D., Tremain, J.C.: A decomposition theorem for frames and the Feichtinger conjecture. Proc. Am. Math. Soc. 136, 2043–2053 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casazza, P.G., Peterson, J., Speegle, D.: Private communication

    Google Scholar 

  16. Casazza, P.G., Tremain, J.: The Kadison–Singer problem in mathematics and engineering. Proc. Natl. Acad. Sci. 103(7), 2032–2039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christensen, O., Lindner, A.: Decompositions of Riesz frames and wavelets into a finite union of linearly independent sets. Linear Algebra Appl. 355, 147–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edmonds, J., Fulkerson, D.R.: Transversals and matroid partition. J. Res. Natl. Bur. Stand. Sect. B 69B, 147–153 (1965)

    MathSciNet  Google Scholar 

  19. Horn, A.: A characterization of unions of linearly independent sets. J. Lond. Math. Soc. 30, 494–496 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janssen, A.J.E.M.: Zak transforms with few zeroes and the tie. In: Feichtinger, H.G., Strohmer, T. (eds.) Advances in Gabor Analysis, pp. 31–70. Birkhäuser, Boston (2002)

    Google Scholar 

  21. Oxley, J.: Matroid Theory. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  22. Rado, R.: A combinatorial theorem on vector spaces. J. Lond. Math. Soc. 37, 351–353 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by NSF DMS 1008183, NSF ATD 1042701, and AFOSR FA9550-11-1-0245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Casazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Casazza, P.G., Speegle, D. (2013). Spanning and Independence Properties of Finite Frames. In: Casazza, P., Kutyniok, G. (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8373-3_3

Download citation

Publish with us

Policies and ethics