Skip to main content

Nash Equilibrium Seeking for Dynamic Systems with Non-quadratic Payoffs

  • Chapter
  • First Online:
Advances in Dynamic Games

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 12))

Abstract

We consider general, stable nonlinear differential equations with N inputs and N outputs, where in the steady state, the output signals represent the payoff functions of a noncooperative game played by the steady-state values of the input signals. To achieve locally stable convergence to the resulting steady-state Nash equilibria, we introduce a non-model-based approach, where the players determine their actions based only on their own payoff values. This strategy is based on the extremum seeking approach, which has previously been developed for standard optimization problems and employs sinusoidal perturbations to estimate the gradient. Since non-quadratic payoffs create the possibility of multiple, isolated Nash equilibria, our convergence results are local. Specifically, the attainment of any particular Nash equilibrium is not assured for all initial conditions, but only for initial conditions in a set around that specific stable Nash equilibrium. For non-quadratic costs, the convergence to a Nash equilibrium is not perfect, but is biased in proportion to the perturbation amplitudes and the higher derivatives of the payoff functions. We quantify the size of these residual biases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, E., Başar, T., Srikant, R.: Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans. Autom. Control 47, 917–930 (2002)

    Article  Google Scholar 

  2. Apostol, T.M.: Mathematical Analysis, 2nd ed. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  3. Ariyur, K.B., Kristic, M.: Real-Time Optimization by Extremum-Seeking Control. Wiley-Interscience, Hoboken (2003)

    Book  MATH  Google Scholar 

  4. Başar, T.: Control and game-theoretic tools for communication networks (overview). Appl. Comput. Math. 6, 104–125 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd ed. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  6. Bauso, D., Giarré, L., Pesenti, R.: Consensus in noncooperative dynamic games: a multiretailer inventory application. IEEE Trans. Autom. Control 53, 998–1003 (2008)

    Article  Google Scholar 

  7. Becker, R., King, R., Petz, R., Nitsche, W.: Adaptive closed-loop separation control on a high-lift configuration using extremum seeking, AIAA J. 45, 1382–1392 (2007)

    Article  Google Scholar 

  8. Carnevale, D., Astolfi, A., Centioli, C., Podda, S., Vitale, V., Zaccarian, L.: A new extremum seeking technique and its application to maximize RF heating on FTU. Fusing Eng. Design 84, 554–558 (2009)

    Article  Google Scholar 

  9. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  10. Cochran, J., Kanso, E., Kelly, S.D., Xiong, H., Krstic, M.: Source seeking for two nonholonomic models of fish locomotion. IEEE Trans. Robot. 25, 1166–1176 (2009)

    Article  Google Scholar 

  11. Cochran, J., Krstic, M.: Nonholonomic source seeking with tuning of angular velocity. IEEE Trans. Autom. Control 54, 717–731 (2009)

    Article  MathSciNet  Google Scholar 

  12. Fink, A.M.: Almost Periodic Differential Equations, Lecture Notes in Mathematics, vol. 377. Springer, New York (1974)

    Google Scholar 

  13. Foster, D.P., Young, H.P.: Regret testing: learning to play Nash equilibrium without knowing you have an opponent. Theor. Econ. 1, 341–367 (2006)

    Google Scholar 

  14. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Guay, M., Perrier, M., Dochain, D.: Adaptive extremum seeking control of nonisothermal continuous stirred reactors. Chem. Eng. Sci. 60, 3671–3681 (2005)

    Article  Google Scholar 

  16. Hale, J.K.: Ordinary Differential Equations. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  17. Hart, S., Mansour, Y.: How long to equilibrium? The communication complexity of uncoupled equilibrium procedures. Games Econ. Behav. 69, 107–126 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Hart, S., Mas-Colell, A.: Uncoupled dynamics do not lead to Nash equilibrium. Am. Econ. Rev. 95, 1830–1836 (2003)

    Article  Google Scholar 

  19. Hart, S., Mas-Colell, A.: Stochastic uncoupled dynamics and Nash equilibrium. Games Econ. Behav. 57, 286–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jafari, A., Greenwald, A., Gondek, D., Ercal, G.: On no-regret learning, fictitious play, and Nash equilibrium. In: Proceedings of the 18th International Conference on Machine Learning (2001)

    Google Scholar 

  21. Khalil, H.K.: Nonlinear Systems, 3rd ed. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  22. Killingsworth, N.J., Aceves, S.M., Flowers, D.L., Espinosa-Loza, F., Krstic, M.: HCCI engine combustion-timing control: optimizing gains and fuel consumption via extremum seeking. IEEE Trans. Control Syst. Technol. 17, 1350–1361 (2009)

    Article  Google Scholar 

  23. Krstic, M., Frihauf, P., Krieger, J., Başar, T.: Nash equilibrium seeking with finitely- and infinitely-many players. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems, Bologna (2010)

    Google Scholar 

  24. Li, S., Başar, T.: Distributed algorithms for the computation of noncooperative equilibria. Automatica 23, 523–533 (1987)

    Article  MATH  Google Scholar 

  25. Luenberger, D.G.: Complete stability of noncooperative games. J. Optim. Theory Appl. 25, 485–505 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, L., Schuster, E.: Mixing enhancement in 2D magnetohydrodynamic channel flow by extremum seeking boundary control. In: Proceedings of the American Control Conference, St. Louis (2009)

    Google Scholar 

  27. MacKenzie, A.B., Wicker, S.B.: Game theory and the design of self-configuring, adaptive wireless networks. IEEE Commun. Mag. 39, 126–131 (2001)

    Article  Google Scholar 

  28. Marden, J.R., Arslan, G., Shamma, J.S.: Cooperative control and potential games. IEEE Trans. Syst. Man Cybern. B Cybern. 39, 1393–1407 (2009)

    Article  Google Scholar 

  29. Moase, W.H., Manzie, C., Brear, M.J.: Newton-like extremum-seeking part I: theory. In: Proceedings of the IEEE Conference on Decision and Control, Shanghai (2009)

    Google Scholar 

  30. Naimzada, A.K., Sbragia, L.: Oligopoly games with nonlinear demand and cost functions: two boundedly rational adjustment processes. Chaos Solitons Fract. 29, 707–722 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nešić, D., Tan, Y., Moase, W.H., Manzie, C.: A unifying approach to extremum seeking: adaptive schemes based on estimation of derivatives. In: Proceedings of the IEEE Conference on Decision and Control, Atlanta (2010)

    Google Scholar 

  32. Peterson, K., Stefanopoulou, A.: Extremum seeking control for soft landing of an electromechanical valve actuator. Automatica 29, 1063–1069 (2004)

    Article  MathSciNet  Google Scholar 

  33. Rao, S.S., Venkayya, V.B., Khot, N.S.: Game theory approach for the integrated design of structures and controls. AIAA J. 26, 463–469 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33, 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. Scutari, G., Palomar, D.P., Barbarossa, S.: The MIMO iterative waterfilling algorithm. IEEE Trans. Signal Process. 57, 1917–1935 (2009)

    Article  Google Scholar 

  36. Semsar-Kazerooni, E., Khorasani, K.: Multi-agent team cooperation: a game theory approach. Automatica 45, 2205–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shamma, J.S., Arslan, G.: Dynamic fictitious play, dynamic gradient play, and distributed convergence to Nash equilibria. IEEE Trans. Autom. Control 53, 312–327 (2005)

    Article  MathSciNet  Google Scholar 

  38. Sharma, R., Gopal, M.: Synergizing reinforcement learning and game theory—a new direction for control. Appl. Soft Comput. 10, 675–688 (2010)

    Article  Google Scholar 

  39. Stanković, M.S., Johansson, K.H., Stipanović, D.M.: Distributed seeking of Nash equilibria in mobile sensor networks. In: Proceedings of the IEEE Conference on Decision and Control, Atlanta (2010)

    Google Scholar 

  40. Stanković, M.S., Stipanović, D.M.: Extremum seeking under stochastic noise and applications to mobile sensors. Automatica 46, 1243–1251 (2010)

    Article  MATH  Google Scholar 

  41. Tan, Y., Nešić, D., Mareels, I.: On non-local stability properties of extremum seeking control. Automatica 42, 889–903 (2006)

    Article  MATH  Google Scholar 

  42. Young, H.P.: Learning by trial and error. Games Econ. Behav. 65, 626–643 (2009)

    Article  MATH  Google Scholar 

  43. Zhang, C., Arnold, D., Ghods, N., Siranosian, A., Krstic, M.: Source seeking with nonholonomic unicycle without position measurement and with tuning of forward velocity. Syst. Control Lett. 56, 245–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhu, M., Martínez, S.: Distributed coverage games for mobile visual sensors (I): Reaching the set of Nash equilibria. In: Proceedings of the IEEE Conference on Decision and Control, Shanghai, China (2009)

    Google Scholar 

Download references

Acknowledgements

This research was made with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a, and by grants from National Science Foundation, DOE, and AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Frihauf .

Editor information

Editors and Affiliations

Appendix

Appendix

The following integrals are computed to obtain (9.21), where we have assumed the frequencies satisfy ω i ≠ω j , 2ω i ≠ω j , 3ω i ≠ω j , ω i ≠ω j  + ω k , ω i ≠2ω j  + ω k , 2ω i ≠ω j  + ω k , for distincti, j, k ∈ { 1, , N} and defined γ i  = ω i  ∕ min i i }:

$$\begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1}{T}{\int }_{0}^{T}{\mu }_{i}(\tau )\,\mathrm{d}\tau & = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}} {T}{\int }_{0}^{T}\sin ({\gamma }_{ i}\tau + {\varphi }_{i})\,\mathrm{d}\tau \\ & = 0,\\ \end{array}$$
(9.55)
$$\begin{array}{rl}\mathop{\lim}\limits_{T\rightarrow \infty }\frac{1} {T}{\int }_{0}^{T}{\mu }_{ i}^{2}(\tau )\,\mathrm{d}\tau & = \mathop{\lim}\limits_{ T\rightarrow \infty }\frac{{a}_{i}^{2}} {2T}{\int }_{0}^{T}[1 -\cos (2{\gamma }_{ i}\tau + 2{\varphi }_{i})]\,\mathrm{d}\tau ,\\ & = \frac{{a}_{i}^{2}}{2} ,\\ \end{array}$$
(9.56)
$$\begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1} {T}{\int }_{0}^{T}{\mu }_{i}^{3}(\tau )\,\mathrm{d}\tau & = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}^{3}} {4T}{\int}_{0}^{T}[3\sin ({\gamma }_{i}\tau + {\varphi }_{i}) -\sin (3{\gamma }_{i}\tau + 3{\varphi }_{i})]\,\mathrm{d}\tau , \\ & = 0,\\ \end{array}$$
(9.57)
$$\begin{array}{rl}{\lim} _{T\rightarrow \infty }\frac{1} {T}{\int }_{0}^{T}{\mu }_{i}^{4}(\tau )\,\mathrm{d}\tau & = \mathop{\lim}\limits_{ T\rightarrow \infty }\frac{{a}_{i}^{4}} {8T}{\int }_{0}^{T}[3 - 4\cos (2{\gamma }_{ i}\tau + 2{\varphi }_{i})\\ &\quad +\cos (4{\gamma }_{i}\tau + 4{\varphi }_{i})]\,\mathrm{d}\tau ,\\ & =\frac{3{a}_{i}^{4}} {8} ,\\ \end{array}$$
(9.58)
$$ \begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1} {T}{\int}_{0}^{T}{\mu }_{i}(\tau ){\mu }_{j}(\tau )\,\mathrm{d}\tau & = \frac{{a}_{i}{a}_{j}} {2T} {\int}_{0}^{T}[\cos (({\gamma }_{i} - {\gamma }_{j})\tau + {\varphi }_{i} - {\varphi }_{j})\\ {} & \quad -\cos (({\gamma }_{i} + {\gamma }_{j})\tau + {\varphi }_{i} + {\varphi }_{j})]\,\mathrm{d}\tau ,\\ & = 0, \\ \end{array}$$
(9.59)
$$\begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1} {T}{\int}_{0}^{T}{\mu }_{i}^{2}(\tau ){\mu }_{ j}(\tau )\,\mathrm{d}\tau & = \frac{{a}_{i}^{2}{a}_{j}} {2T} {\int}_{0}^{T}[\sin ({\gamma }_{j}\tau + {\varphi }_{j})\\ &\quad -\cos (2{\gamma }_{i}\tau + 2{\varphi }_{i})\sin ({\gamma }_{j}\tau + {\varphi }_{j})]\,\mathrm{d}\tau ,\\ & = \frac{{a}_{i}^{2}{a}_{j}}{4T} {\int}_{0}^{T}[2\,\sin ({\gamma }_{j}\tau + {\varphi }_{j})\\ & \quad -\sin ((2{\gamma }_{i} + {\gamma }_{j})\tau + 2{\varphi }_{i} + {\varphi }_{j})\\ &\quad+\sin ((2{\gamma }_{i} - {\gamma }_{j})\tau + 2{\varphi }_{i} - {\varphi }_{j})]\,\mathrm{d}\tau,\\ & = 0, \\ \end{array}$$
(9.60)
$$ \begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1} {T}{\int}_{0}^{T}{\mu }_{i}^{3}(\tau ){\mu }_{ j}(\tau )\,\mathrm{d}\tau & = \frac{{a}_{i}^{3}{a}_{j}} {4T} {\int}_{0}^{T}[3\sin ({\gamma }_{i}\tau + {\varphi }_{j})\sin ({\gamma }_{j}\tau + {\varphi }_{j})\\ & \quad -\sin (3{\gamma }_{i}\tau + 3{\varphi }_{i})\sin ({\gamma }_{j}\tau + {\varphi }_{j})]\,\mathrm{d}\tau ,\\ & = \frac{{a}_{i}^{3}{a}_{j}}{8T} {\int}_{0}^{T}[3\cos (({\gamma }_{i} - {\gamma }_{j})\tau + {\varphi }_{i} - {\varphi }_{j})\\ & \quad -3\cos (({\gamma }_{i} + {\gamma }_{j})\tau + {\varphi }_{i} + {\varphi }_{j})\\ & \quad-\cos ((3{\gamma }_{i} - {\gamma }_{j})\tau + 3{\varphi }_{i} - {\varphi }_{j})\\ & \quad +\cos ((3{\gamma }_{i} + {\gamma }_{j})\tau + 3{\varphi }_{i} + {\varphi }_{j})]\,\mathrm{d}\tau ,\\ & =0, \\ \end{array}$$
(9.61)
$$\begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1}{T}{\int}_{0}^{T}{\mu }_{ i}^{2}(\tau ){\mu }_{j}^{2}(\tau )\,\mathrm{d}\tau & = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}^{2}{a}_{j}^{2}} {8T} {\int}_{0}^{T}[2 - 2\cos (2{\gamma }_{i}\tau + 2{\varphi }_{i})\\ & \quad -2\,\cos (2{\gamma }_{j}\tau + 2{\varphi }_{j})\\ & \quad +\cos (2({\gamma }_{i} - {\gamma }_{j})\tau + 2({\varphi }_{i} - {\varphi }_{j}))\\ &\quad +\cos (2({\gamma }_{i} + {\gamma }_{j})\tau + 2({\varphi }_{i} + {\varphi }_{j}))]\,\mathrm{d}\tau ,\\ & =\frac{{a}_{i}^{2}{a}_{j}^{2}}{4} , \\ \end{array} $$
(9.62)
$$\begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1}{T}{\int}_{0}^{T}{\mu }_{ i}(\tau ){\mu }_{j}(\tau ){\mu }_{k}(\tau )\,\mathrm{d}\tau ,& = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}{a}_{j}{a}_{k}} {2T} {\int}_{0}^{T}[\cos (({\gamma }_{i} - {\gamma }_{j})\tau + {\varphi }_{i} - {\varphi }_{j})\\ & \quad -\cos (({\gamma }_{i} + {\gamma }_{j})\tau + {\varphi }_{i} + {\varphi }_{j})]\sin ({\gamma }_{k}\tau + {\varphi }_{k})\,\mathrm{d}\tau ,\\ & = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}{a}_{j}{a}_{k}}{4T}\\ & \quad \times {\int}_{0}^{T}[\sin (({\gamma }_{i} - {\gamma }_{j} + {\omega }_{k})\tau + {\varphi }_{i} - {\varphi }_{j} + {\varphi }_{k})\\ & \quad -\sin (({\gamma }_{i} - {\gamma }_{j} - {\gamma }_{k})\tau + {\varphi }_{i} - {\varphi }_{j} - {\varphi }_{k})\\ & \quad -\sin (({\gamma }_{i} + {\gamma }_{j} + {\gamma }_{k})\tau + {\varphi }_{i} + {\varphi }_{j} + {\varphi }_{k})\\ & \quad +\sin (({\gamma }_{i} + {\gamma }_{j} - {\gamma }_{k})\tau + {\varphi }_{i} + {\varphi }_{j} - {\varphi }_{k})]\,\mathrm{d}\tau ,\\ & = 0, \\ \end{array}$$
(9.63)
$$\begin{array}{rl} \mathop{\lim}\limits_{T\rightarrow \infty }\frac{1}{T}{\int}_{0}^{T}{\mu }_{i}(\tau ){\mu }_{j}^{2}(\tau ){\mu }_{k}(\tau )\,\mathrm{d}\tau ,& = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}{a}_{j}^{2}{a}_{k}} {2T} {\int}_{0}^{T}\sin ({\gamma }_{i}\tau + {\varphi }_{i})\\ & \quad \times (1 -\cos (2{\gamma }_{j}\tau + 2{\varphi }_{j}))\sin ({\gamma }_{k}\tau + {\varphi }_{k})\,\mathrm{d}\tau ,\\ & = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}{a}_{j}^{2}{a}_{k}}{4T} {\int}_{0}^{T}[\cos (({\gamma }_{i} - {\gamma }_{k})\tau + {\varphi }_{i} - {\varphi }_{k})\\ & \quad -\cos (({\gamma }_{i} + {\gamma }_{k})\tau + {\varphi }_{i} + {\varphi }_{k})]\\ & \quad \times (1 -\cos (2{\gamma }_{j}\tau + 2{\varphi }_{j}))\,\mathrm{d}\tau\\ & = \mathop{\lim}\limits_{T\rightarrow \infty }\frac{{a}_{i}{a}_{j}^{2}{a}_{k}}{8T} {\int}_{0}^{T}[2\,\cos (({\gamma }_{i} - {\gamma }_{k})\tau + {\varphi }_{i} - {\varphi }_{k})\\ & \quad -\cos (({\gamma }_{i} - 2{\gamma }_{j} - {\gamma }_{k})\tau + {\varphi }_{i} - 2{\varphi }_{j} - {\varphi }_{k})\\ & \quad -\cos (({\gamma }_{i} + 2{\gamma }_{j} - {\gamma }_{k})\tau + {\varphi }_{i} + 2{\varphi }_{j} - {\varphi }_{k})\\ & \quad +\cos (({\gamma }_{i} - 2{\gamma }_{j} + {\gamma }_{k})\tau + {\varphi }_{i} - 2{\varphi }_{j} + {\varphi }_{k})\\ & \quad +\cos (({\gamma }_{i} + 2{\gamma }_{j} + {\gamma }_{k})\tau + {\varphi }_{i} + 2{\varphi }_{j} + {\varphi }_{k})\\ & \quad -2\cos (({\gamma }_{i} + {\gamma }_{k})\tau + {\varphi }_{i} + {\varphi }_{k})]\,\mathrm{d}\tau ,\\ & =0. \\ \end{array}$$
(9.64)

The conditions 3ω i ≠ω j , ω i ≠2ω j  + ω k , and 2ω i ≠ω j  + ω k , arise due to the payoff functions being non-quadratic and are not required for quadratic payoff functions.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frihauf, P., Krstic, M., Başar, T. (2013). Nash Equilibrium Seeking for Dynamic Systems with Non-quadratic Payoffs. In: Cardaliaguet, P., Cressman, R. (eds) Advances in Dynamic Games. Annals of the International Society of Dynamic Games, vol 12. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8355-9_9

Download citation

Publish with us

Policies and ethics