Skip to main content

Abstract

Using the introduction to Wiener processes, the Itô integral is defined, and all its main properties are proven. Then the stochastic differential is introduced, and Itô’s formula is proven. Major results from the Itô calculus, including the fundamental martingale representation theorem, are presented. Finally, an introduction to the Itô-Lévy calculus with respect to Lévy processes is introduced up to a generalization of Itô’s formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a revision, see the appendix A or, in addition, e.g., Kolmogorov and Fomin (1961).

  2. 2.

    For this classical result of analysis, see, e.g., Kolmogorov and Fomin (1961).

References

  • Aalen O., Nonparametric inference for a family of counting processes, Annals of Statistics, 701–726, 6; 1978.

    Google Scholar 

  • Aletti G. and Capasso V., Profitability in a multiple strategy market, Decis. Econ. Finance, 145–152, 26; 2003.

    MathSciNet  Google Scholar 

  • Andersen P. K., Borgan Ø., Gill R.D., and Keiding N., Statistical Models Based on Counting Processes, Springer, Heidelberg; 1993.

    MATH  Google Scholar 

  • Anderson W. J., Continuous-Time Markov Chains: An Application-Oriented Approach, Springer, New York; 1991.

    Google Scholar 

  • Applebaum D., Levy Processes and Stochastic Calculus, Cambridge University Press, Cambridge; 2004.

    MATH  Google Scholar 

  • Arnold L., Stochastic Differential Equations: Theory and Applications, Wiley, New York; 1974.

    Google Scholar 

  • Ash R. B., Real Analysis and Probability, Academic, London; 1972.

    Google Scholar 

  • Ash R. B. and Gardner M. F., Topics in Stochastic Processes, Academic, London; 1975.

    MATH  Google Scholar 

  • Aubin J.-P., Applied Abstract Analysis, Wiley, New York; 1977.

    MATH  Google Scholar 

  • Bachelier L., Théorie de la spéculation, Ann. Sci. École Norm. Sup., 21–86, 17; 1900.

    Google Scholar 

  • Bailey N. T. J., The Mathematical Theory of Infectious Diseases, Griffin, London; 1975.

    MATH  Google Scholar 

  • Baldi P., Equazioni differenziali stocastiche, UMI, Bologna; 1984.

    Google Scholar 

  • Bartholomew D. J., Continuous time diffusion models with random duration of interest, J. Math. Sociol., 187–199, 4; 1976.

    MathSciNet  Google Scholar 

  • Bauer H., Probability Theory and Elements of Measure Theory, Academic, London; 1981.

    Google Scholar 

  • Becker N., Analysis of Infectious Disease Data, Chapman & Hall, London; 1989.

    Google Scholar 

  • Belleni-Morante A. and McBride A. C., Applied Nonlinear Semigroups, Wiley, Chichester; 1998.

    MATH  Google Scholar 

  • Bertoin J., Lévy Processes, Cambridge University Press, Cambridge, UK; 1996.

    MATH  Google Scholar 

  • Bhattacharya R. N. and Waymire E. C., Stochastic Processes with Applications, Wiley, New York; 1990.

    Google Scholar 

  • Bianchi A., Capasso V., and Morale D., Estimation and prediction of a nonlinear model for price herding in Complex Models and Intensive Computational Methods for Estimation and Prediction (C. Provasi, Ed.), CLUEP, Padova, 2005, pp. 365–370.

    Google Scholar 

  • Billingsley P., Convergence of Probability Measures, Wiley, New York; 1968.

    MATH  Google Scholar 

  • Billingsley P., Probability and Measure, Wiley, New York; 1986.

    MATH  Google Scholar 

  • Black F. and Scholes M., The pricing of options and corporate liabilities, J. Pol. Econ., 637–654, 81; 1973.

    Google Scholar 

  • Bohr H., Almost Periodic Functions, Chelsea, New York; 1947.

    Google Scholar 

  • Borodin A. and Salminen P., Handbook of Brownian Motion: Facts and Formulae, Birkhä user, Boston; 1996.

    MATH  Google Scholar 

  • Boyle P. and Tian Y., Pricing lookback and barrier options under the CEV process, J. Fin. Quant. Anal., 241–264, 34; 1999.

    Google Scholar 

  • Brace A., Gatarek D., & Musiela M., The market model of interest rate dynamics, Math. Fin., 127–154, 7; 1997.

    MathSciNet  Google Scholar 

  • Breiman L., Probability, Addison-Wesley, Reading, MA; 1968.

    MATH  Google Scholar 

  • Bremaud P., Point Processes and Queues: Martingale Dynamics, Springer, Heidelberg; 1981.

    MATH  Google Scholar 

  • Burger M., Capasso V. and Morale D., On an aggregation model with long and short range interaction, Nonlinear Anal. Real World Appl., 939–958, 3; 2007.

    MathSciNet  Google Scholar 

  • Cai G. Q. and Lin Y. K., Stochastic analysis of the Lotka-Volterra model for ecosystems, Phys. Rev. E, 041910, 70; 2004.

    Google Scholar 

  • Capasso V., A counting process approach for stochastic age-dependent population dynamics, in Biomathematics and Related Computational Problems (L. M. Ricciardi, Ed.), pp. 255–269, Kluwer, Dordrecht; 1988.

    Google Scholar 

  • Capasso V., A counting process approach for age-dependent epidemic systems, in Stochastic Processes in Epidemic Theory (J. P. Gabriel et al., Eds.) pp. 118–128, Lecture Notes in Biomathematics, Vol. 86, Springer, Heidelberg; 1990.

    Google Scholar 

  • Capasso V., Mathematical Structures of Epidemic Systems, Springer, Heidelberg; 1993. 2nd corrected printing; 2008.

    Google Scholar 

  • Capasso V., Di Liddo A., and Maddalena L., Asymptotic behaviour of a nonlinear model for the geographical diffusion of innovations, Dynamic Systems and Applications, 207–220, 3; 1994.

    Google Scholar 

  • Capasso V. and Morale D., Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 574–603, 27; 2009.

    Google Scholar 

  • Capasso V., Morale D., and Sioli F., An agent-based model for “price herding”, applied to the automobile market, MIRIAM reports, Milan; 2003.

    Google Scholar 

  • Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rat. Mech. Anal., 269–361, 147; 1999.

    MathSciNet  Google Scholar 

  • Carrillo J. A., McCann R. J. and Villani C., Kinetic equilibration rates for granular nedia and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 971–1018, 19; 2003.

    MathSciNet  Google Scholar 

  • Champagnat N., Ferriére R., and Méléard S. Unifying evolutionary dynamics: From individula stochastic processes to macroscopic models, Theor. Pop. Biol., 297–321, 69; 2006.

    Google Scholar 

  • Chan K. C., Karolyi G.A., Longstaff F.A. and Sanders A. B., An empirical comparison of alternative models of the short-term interest rate, J. Fin., 1209–1227, 47; 1992.

    Google Scholar 

  • Chiang C.L., Introduction to Stochastic Processes in Biostatistics, Wiley, New York; 1968.

    MATH  Google Scholar 

  • Chow Y. S. and Teicher H., Probability Theory: Independence, Interchangeability, Martingales, Springer, New York; 1988.

    MATH  Google Scholar 

  • Chung K. L., A Course in Probability Theory, Second Edition, Academic, New York; 1974.

    MATH  Google Scholar 

  • Cox J. C., The constant elasticity of variance option pricing model, J. Portfolio Manage., 15–17, 22; 1996.

    Google Scholar 

  • Cox J. C., Ross S. A. and Rubinstein M., Option pricing: A simplified approach, J. Fin. Econ., 229–263, 7; 1979.

    Google Scholar 

  • Çynlar E., Introduction to Stochastic Processes, Prentice Hall, Englewood Cliffs, NJ; 1975.

    Google Scholar 

  • Dalang R. C., Morton A. and Willinger W., Equivalent martingale measures and non-arbitrage in stochastic securities market models, Stochast. Stochast. Rep., 185–201, 29; 1990.

    MathSciNet  Google Scholar 

  • Daley D. and Vere-Jones D., An Introduction to the Theory of Point Processes, Springer, Berlin; 1988.

    MATH  Google Scholar 

  • Daley D. and Vere-Jones D., An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure, Springer, Heidelberg; 2008.

    Google Scholar 

  • Darling D. A. D. and Siegert A. J. F., The first passage time problem for a continuum Markov process, Ann. Math. Stat., 624–639, 24; 1953.

    MathSciNet  Google Scholar 

  • Davis M. H. A., Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models, J. R. Stat. Soc. Ser. B, 353–388, 46; 1984.

    Google Scholar 

  • Delbaen F. and Schachermeyer W., A general version of the fundamental theorem of asset pricing, Math. Annal., 463–520, 300; 1994.

    Google Scholar 

  • De Masi A. and Presutti E., Mathematical Methods for Hydrodynamical Limits, Springer, Heidelberg; 1991.

    Google Scholar 

  • Dieudonné J., Foundations of Modern Analysis, Academic, New York; 1960.

    MATH  Google Scholar 

  • Di Nunno G., Øksendal B. and Proske F., Malliavin Calculus for Levy Processes with Applications to Finance, Springer, Berlin Heidelberg; 2009.

    Google Scholar 

  • Donsker M. D. and Varadhan S. R. S., Large deviations from a hydrodynamical scaling limit, Comm. Pure Appl. Math., 243–270, 42; 1989.

    MathSciNet  Google Scholar 

  • Doob J. L., Stochastic Processes, Wiley, New York; 1953.

    MATH  Google Scholar 

  • Dudley R. M., Real Analysis and Probability, Cambridge University Press, Cambridge; 2005.

    Google Scholar 

  • Duffie D., Dynamic Asset Pricing Theory, Princeton University Press, Princeton, NJ; 1996.

    Google Scholar 

  • Dupire B., Pricing with a smile, RISK, 18–20, 1; 1994.

    Google Scholar 

  • Durrett R. and Levin S. A., The importance of being discrete (and spatial), Theor. Pop. Biol., 363–394, 46; 1994.

    Google Scholar 

  • Dynkin E. B., Markov Processes, Springer, Berlin, Vols. 1–2; 1965.

    Google Scholar 

  • Einstein A., Über die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annal. Phys., 549–560, 17; 1905.

    Google Scholar 

  • Embrechts P., Klüppelberg C. and Mikosch T., Modelling Extreme Events for Insurance and Finance, Springer, Berlin; 1997.

    Google Scholar 

  • Epstein J. and Axtell R., Growing Artificial Societies–Social Sciences from the Bottom Up, Brookings Institution Press and MIT Press, Cambridge, MA; 1996.

    Google Scholar 

  • Ethier S. N. and Kurtz T. G., Markov Processes, Characterization and Convergence, Wiley, New York; 1986.

    MATH  Google Scholar 

  • Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York; 1971.

    MATH  Google Scholar 

  • Flierl G., Grünbaum D., Levin S. A. and Olson D., From individuals to aggregations: The interplay between behavior and physics, J. Theor. Biol., 397–454, 196; 1999.

    Google Scholar 

  • Fournier N. and Méléard S., A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Prob., 1880–1919, 14; 2004.

    Google Scholar 

  • Franke J., Härdle W. K. and Hafner C. M., Statistics of Financial Markets: An Introduction, Second Edition, Springer, Heidelberg; 2011.

    MATH  Google Scholar 

  • Friedman A., Partial Differential Equations, Krieger, New York; 1963.

    MATH  Google Scholar 

  • Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hall, London; 1964.

    MATH  Google Scholar 

  • Friedman A., Stochastic Differential Equations and Applications, Academic, London; 1975. Two volumes bounded as one, Dover, Mineola, NY; 2004.

    Google Scholar 

  • Fristedt B., and Gray L., A Modern Approach to Probability Theory, Birkhäuser, Boston; 1997.

    MATH  Google Scholar 

  • Gard T. C., Introduction to Stochastic Differential Equations, Marcel Dekker, New York; 1988.

    MATH  Google Scholar 

  • Gihman I. I. and Skorohod A. V., Stochastic Differential Equations, Springer, Berlin; 1972.

    MATH  Google Scholar 

  • Gihman I. I. and Skorohod A. V., The Theory of Random Processes, Springer, Berlin; 1974.

    Google Scholar 

  • Gnedenko B. V., The Theory of Probability, Chelsea, New York; 1963.

    Google Scholar 

  • Grigoriu M., Stochastic Calculus: Applications to Science and Engineering, Birkhäuser, Boston; 2002.

    Google Scholar 

  • Grünbaum D. and Okubo A., Modelling social animal aggregations, in Frontiers of Theoretical Biology (S. A. Levin, Ed.) pp. 296–325, Lectures Notes in Biomathematics, Vol. 100, Springer, New York; 1994.

    Google Scholar 

  • Gueron S., Levin S. A. and Rubenstein D. I., The dynamics of herds: From individuals to aggregations, J. Theor. Biol., 85–98, 182; 1996.

    Google Scholar 

  • Hagan P. S., Kumar D., Lesniewski A. and Woodward D. E., Managing smile risk, Wilmott Mag., 84–102, 1; 2002

    Google Scholar 

  • Harrison J. M. and Kreps D. M., Martingales and arbitrage in multiperiod securities markets, J. Econ. Theory, 381–408, 20; 1979.

    MathSciNet  Google Scholar 

  • Harrison J. M. and Pliska S. R., Martingales and stochastic integrals in the theory of continuous trading, Stochast. Process. Appl., 215–260, 11; 1981.

    MathSciNet  Google Scholar 

  • Has’minskii R. Z., Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, The Netherlands; 1980.

    Google Scholar 

  • Heath D., Jarrow R. and Morton A., Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation, Econometrica, 77–105, 1; 1992.

    Google Scholar 

  • Heston S. L., A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Rev. Fin. Stud., 327–343, 6; 1993.

    Google Scholar 

  • Hunt P. J. and Kennedy J. E., Financial Derivatives in Theory and Practice, Wiley, New York; 2000.

    MATH  Google Scholar 

  • Hull J. and White A., Pricing interest rate derivative securities, Rev. Fin. Stud., 573–592, 4; 1990.

    Google Scholar 

  • Ikeda N. and Watanabe S., Stochastic Differential Equations and Diffusion Processes, North-Holland, Kodansha; 1989.

    MATH  Google Scholar 

  • Itô K. and McKean H. P., Diffusion processes and their sample paths, Springer, Berlin; 1965.

    MATH  Google Scholar 

  • Jacobsen M., Statistical Analysis of Counting Processes, Springer, Heidelberg; 1982.

    MATH  Google Scholar 

  • Jacod J. and Protter P., Probability Essentials, Springer, Heidelberg; 2000.

    MATH  Google Scholar 

  • Jacod J. and Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer Lecture Notes in Mathematics, Springer, Berlin; 1987.

    MATH  Google Scholar 

  • Jamshidian F., LIBOR and swap market models and measures, Fin. Stochast., 43–67, 1; 1997.

    Google Scholar 

  • Jeanblanc M., Yor M. and Chesney M., Mathematical Methods for Financial Markets, Springer, London; 2009.

    MATH  Google Scholar 

  • Jelinski Z. and Moranda P., Software reliability research, in Statistical Computer Performance Evaluation, pp. 466–484, Academic, New York; 1972.

    Google Scholar 

  • Kallenberg O., Foundations of Modern Probability, Springer, Berlin; 1997.

    MATH  Google Scholar 

  • Karatzas I. and Shreve S. E., Brownian Motion and Stochastic Calculus, Springer, New York; 1991.

    MATH  Google Scholar 

  • Karlin S. and Taylor H. M., A First Course in Stochastic Processes, Academic, New York; 1975.

    MATH  Google Scholar 

  • Karlin S. and Taylor H. M., A Second Course in Stochastic Processes, Academic, New York; 1981.

    MATH  Google Scholar 

  • Karr A. F., Point Processes and Their Statistical Inference, Marcel Dekker, New York; 1986.

    MATH  Google Scholar 

  • Karr A. F., Point Processes and Their Statistical Inference, Second Edition Revised and expanded. Marcel Dekker, New York; 1991.

    MATH  Google Scholar 

  • Klenke A., Probability Theory, Springer, Heidelberg; 2008.

    Google Scholar 

  • Kloeden P. E. and Platen E., Numerical Solution of Stochastic Differential Equations, Springer, Heidelberg; 1999.

    Google Scholar 

  • Kolmogorov A. N., Foundations of the Theory of Probability, Chelsea, New York; 1956.

    MATH  Google Scholar 

  • Kolmogorov A. N. and Fomin E. S. V., Elements of Theory of Functions and Functional Analysis, Groylock, Moscow; 1961.

    MATH  Google Scholar 

  • Kou S., A jump-diffusion model for option pricing, Manage. Sci., 1086–1101, 48; 2002.

    Google Scholar 

  • Ladyzenskaja O. A., Solonnikov V. A. and Ural’ceva N.N., Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, RI, 1968.

    Google Scholar 

  • Lamperti J., Stochastic Processes: A Survey of the Mathematical Theory, Springer, New York; 1977.

    MATH  Google Scholar 

  • Lapeyre B., Pardoux E. and Sentis R. Introduction to Monte-Carlo methods for transport and diffusion equations, Oxford University Press, Oxford; 2003.

    MATH  Google Scholar 

  • Last G. and Brandt A., Marked Point Processes on the Real Line: The Dynamic Approach, Springer, Heidelberg; 1995.

    MATH  Google Scholar 

  • Lewis A. L., Option Valuation Under Stochastic Volatility, Finance Press, Newport Beach; 2000.

    MATH  Google Scholar 

  • Lipster R. and Shiryaev A. N., Statistics of Random Processes, I: General Theory, Springer, Heidelberg; 1977.

    Google Scholar 

  • Lipster R. and Shiryaev A. N., Statistics of Random Processes, II: Applications, Springer, Heidelberg; Second Edition, 2010.

    Google Scholar 

  • Loève M., Probability Theory, Van Nostrand-Reinhold, Princeton, NJ; 1963.

    MATH  Google Scholar 

  • Lu L., Optimal control of input rates of Stein’s models, Math. Med. Biol., 31–46, 28; 2011.

    Google Scholar 

  • Ludwig D., Stochastic Population Theories, Lecture Notes in Biomathematics, Vol. 3, Springer, Heidelberg; 1974.

    Google Scholar 

  • Lukacs E., Characteristic Functions, Griffin, London; 1970.

    MATH  Google Scholar 

  • Mahajan V. and Wind Y., Innovation Diffusion Models of New Product Acceptance, Ballinger, Cambridge, MA; 1986.

    Google Scholar 

  • Malrieu F., Convergence to equilibrium for granular media equations and their Euler scheme, Ann. Appl. Prob., 540–560, 13; 2003.

    MathSciNet  Google Scholar 

  • Mandelbrot K. and van Ness J., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 422–437, 10; 1968.

    Google Scholar 

  • Mao X., Stochastic Differential Equations and Applications, Horwood, Chichester; 1997.

    MATH  Google Scholar 

  • Mao X., Marion G. and Renshaw E., Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 95–110, 97; 2002.

    MathSciNet  Google Scholar 

  • Mao X, et al. Stochastic differential delay equations of population dynamics, J. Math. Anal. Appl., 296–320, 304;2005.

    Google Scholar 

  • Markowich P. A. and Villani C., On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Math. Contemp., 1–31, 19; 2000.

    MathSciNet  Google Scholar 

  • Medvegyev P., Stochastic Integration Theory, Oxford University Press, Oxford; 2007.

    MATH  Google Scholar 

  • Méléard S., Asymptotic behaviour of some interacting particle systems: McKean–Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (D. Talay, L. Tubaro, Eds.) pp. 42–95, Lecture Notes in Mathematics, Vol. 1627, CIME Subseries, Springer, Heidelberg; 1996.

    Google Scholar 

  • Merton R. C., Theory of rational option pricing, Bell J. Econ. Manage. Sci., 141–183, 4; 1973.

    MathSciNet  Google Scholar 

  • Merton R. C., Option pricing when underlying stock returns are discontinuous, J. Fin. Econ., 125–144, 3; 1976.

    Google Scholar 

  • Métivier M., Notions fondamentales de la théorie des probabilités, Dunod, Paris; 1968.

    MATH  Google Scholar 

  • Meyer P. A., Probabilités et Potentiel, Ilermann, Paris; 1966.

    MATH  Google Scholar 

  • Mikosch T., Non-Life Insurance Mathematics, Springer, Berlin Heidelberg; Second Edition, 2009.

    Google Scholar 

  • Miltersen K. R., Sandmann K. and Sondermann D., Closed form solutions for term structure derivatives with log-normal interest rates, J. Fin., 409–430, 52; 1997.

    Google Scholar 

  • Morale D., Capasso V. and Oelschläger K., An interacting particle system modelling aggregation behaviour: From individuals to populations, J. Math. Biol.; 2004.

    Google Scholar 

  • Musiela M. and Rutkowski M., Martingale Methods in Financial Modelling, Springer, Berlin; 1998.

    Google Scholar 

  • Nagai T. and Mimura M., Some nonlinear degenerate diffusion equations related to population dynamics, J. Math. Soc. Japan, 539–561, 35; 1983.

    MathSciNet  Google Scholar 

  • Neveu J., Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco; 1965.

    MATH  Google Scholar 

  • Nowman K. B., Gaussian estimation of single-factor continuous time models of the term structure of interest rate, J. Fin., 1695–1706, 52; 1997.

    Google Scholar 

  • Oelschläger K., A law of large numbers for moderately interacting diffusion processes, Z. Wahrsch. verw. Geb., 279–322, 69; 1985.

    Google Scholar 

  • Oelschläger K., Large systems of interacting particles and the porous medium equation, J. Differential Equations, 294–346, 88; 1990.

    Google Scholar 

  • Øksendal B., Stochastic Differential Equations, Springer, Berlin; 1998.

    Google Scholar 

  • Okubo A., Dynamical aspects of animal grouping: Swarms, school, flocks and herds, Adv. BioPhys., 1–94, 22; 1986.

    Google Scholar 

  • Parzen E., Stochastic Processes, Holden-Day, San Francisco; 1962.

    MATH  Google Scholar 

  • Pascucci A., Calcolo Stocastico per la Finanza, Springer Italia, Milano; 2008.

    MATH  Google Scholar 

  • Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York; 1983.

    MATH  Google Scholar 

  • Pliska S. R., Introduction to Mathematical Finance: Discrete-Time Models, Blackwell, Oxford; 1997.

    Google Scholar 

  • Protter P., Stochastic Integration and Differential Equations, Springer, Berlin; 1990. Second Edition 2004.

    Google Scholar 

  • Rebolledo R., Central limit theorems for local martingales, Z. Wahrsch. verw. Geb., 269–286, 51; 1980.

    MathSciNet  Google Scholar 

  • Revuz D. and Yor M., Continuous Martingales and Brownian Motion, Springer, Heidelberg; 1991.

    MATH  Google Scholar 

  • Robert P., Stochastic Networks and Queues, Springer, Heidelberg; 2003.

    MATH  Google Scholar 

  • Rogers L. C. G. and Williams D., Diffusions, Markov Processes and Martingales, Vol. 1, Wiley, New York; 1994.

    MATH  Google Scholar 

  • Rolski T., Schmidli H., Schmidt V. and Teugels J., Stochastic Processes for Insurance and Finance, Wiley, New York; 1999.

    MATH  Google Scholar 

  • Roozen H., Equilibrium and extinction in stochastic population dynamics, Bull. Math. Biol., 671–696, 49; 1987.

    MathSciNet  Google Scholar 

  • Samorodnitsky G. and Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman & Hall/CRC Press, Boca Ration, FL; 1994.

    MATH  Google Scholar 

  • Sato K. I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, UK; 1999.

    MATH  Google Scholar 

  • Schuss Z., Theory and Applications of Stochastic Differential Equations, Wiley, New York; 1980.

    MATH  Google Scholar 

  • Schuss Z., Theory and Applications of Stochastic Processes: An Analytical Approach, Springer, New York; 2010.

    Google Scholar 

  • Shiryaev A. N., Probability, Springer, New York; 1995.

    MATH  Google Scholar 

  • Shiryaev A. N. and A. S. Cherny Vector stochastic integrals and the fundamental theorems of asset pricing, Tr. Mat. Inst., Steklova, 12–56, 237; 2002.

    Google Scholar 

  • Skellam J. G., Random dispersal in theoretical populations, Biometrika, 196–218, 38; 1951.

    MathSciNet  Google Scholar 

  • Skorohod A. V., Studies in the Theory of Random Processes, Dover, New York; 1982.

    Google Scholar 

  • Skorohod A. V., Asymptotic Methods in the Theory of Stochastic Differential Equations, AMS, Providence, RI; 1989.

    Google Scholar 

  • Sobczyk K., Stochastic Differential Equations: With Applications to Physics and Engineering, Kluwer, Dordrecht; 1991.

    MATH  Google Scholar 

  • Stein R. B., A theoretical analysis of neuronal variability, Biophys. J., 173–194, 5; 1965.

    Google Scholar 

  • Stein R. B., Some models of neuronal variability, Biophys. J., 37–68, 7; 1967.

    Google Scholar 

  • Taira K., Diffusion Processes and Partial Differential Equations, Academic, New York; 1988.

    MATH  Google Scholar 

  • Tan W. Y., Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, World Scientific, Singapore; 2002.

    MATH  Google Scholar 

  • Tucker H.G., A Graduate Course in Probability, Academic Press, New York; 1967.

    MATH  Google Scholar 

  • Tuckwell H. C., On the first exit time problem for temporarily homogeneous Markov process, J. Appl. Prob., 39–48, 13; 1976.

    MathSciNet  Google Scholar 

  • Tuckwell H. C., Stochastic Processes in the Neurosciences, SIAM, Philadelphia; 1989.

    Google Scholar 

  • Vasicek O., An equilibrium characterisation of the term structure, J. Fin. Econ., 177–188, 5; 1977.

    Google Scholar 

  • Ventcel’ A. D., A Course in the Theory of Stochastic Processes, Nauka, Moscow (in Russian); 1975. Second Edition 1996.

    Google Scholar 

  • Veretennikov A. Y., On subexponential mixing rate for Markov processes, Theory Prob. Appl., 110–122, 49; 2005.

    MathSciNet  Google Scholar 

  • Wang F. J. S., Gaussian approximation of some closed stochastic epidemic models, J. Appl. Prob., 221–231, 14; 1977.

    Google Scholar 

  • Warburton K. and Lazarus J., Tendency-distance models of social cohesion in animal groups, J. Theor. Biol., 473–488, 150; 1991.

    Google Scholar 

  • Wax N., Selected Papers on Noise and Stochastic Processes, Dover, New York; 1954.

    MATH  Google Scholar 

  • Williams D., Probability with Martingales, Cambridge University Press, Cambridge, UK; 1991.

    MATH  Google Scholar 

  • Wilmott P., Dewynne J. N. and Howison S. D.,Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford; 1993.

    Google Scholar 

  • Wu F., Mao X. and Chen K., A highly sensitive mean-reverting process in finance and the Euler–Maruyama approximations, J. Math. Anal. Appl., 540–554, 348; 2008.

    MathSciNet  Google Scholar 

  • Yang G., Stochastic epidemics as point processes, in Mathematics in Biology and Medicine (V. Capasso, E. Grosso, S. L. Paveri-Fontana, Eds.), pp. 135–144, Lectures Notes in Biomathematics, Vol. 57, Springer, Heidelberg; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2012). The Itô Integral. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8346-7_3

Download citation

Publish with us

Policies and ethics