This chapter provides a brief overview of basic concepts in game theory. These include game formulations and classifications, games in extensive vs. in normal form, games with continuous action (strategy) sets vs. finite strategy sets, mixed vs. pure strategies, and games with uncoupled (orthogonal) vs. coupled action sets. The next section reviews basic solution concepts, among them Nash equilibria being of most relevance. The chapter is concluded with some remarks on the rationality assumption and learning in classical games. The following chapters will introduce these concepts formally.


Nash Equilibrium Mixed Strategy Pure Strategy Solution Concept Coordination Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 11.
    Altman, E., Basar, T.: Multiuser rate-based flow control. IEEE Trans. Commun. 46(7), 940–949 (1998) CrossRefGoogle Scholar
  2. 13.
    Altman, E., Basar, T., Srikant, R.: Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans. Autom. Control 47(6), 917–930 (2002) MathSciNetCrossRefGoogle Scholar
  3. 14.
    Altman, E., Boulogne, T., El-Azouziand, R., Jimenez, T., Wynter, L.: A survey on networking games in telecommunications. Comput. Oper. Res. 33(2), 286–311 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 20.
    Basar, T., Olsder, G.J.: In: Dynamic Noncooperative Game Theory. SIAM Series Classics in Applied Mathematics, 2nd edn. (1999) Google Scholar
  5. 24.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua (1999) zbMATHGoogle Scholar
  6. 31.
    Brown, G.W.: Activity Analysis of Production and Allocation. Wiley, New York (1951) Google Scholar
  7. 48.
    Fudenberg, D., Kreps, D.M.: Learning mixed equilibria. Games Econ. Behav. 5, 320–367 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 49.
    Fudenberg, D., Levine, D.K.: Theory of Learning in Games. MIT Press, Cambridge (1998) zbMATHGoogle Scholar
  9. 54.
    Greenwald, A., Friedman, E.J., Shenker, S.: Learning in network contexts: experimental results from simulations. Games Econ. Behav. 35, 80–123 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 58.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  11. 74.
    Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, Berlin (1988) zbMATHCrossRefGoogle Scholar
  12. 75.
    Krishna, V., Sjostrom, T.: On the convergence of fictitious play. Math. Oper. Res. 23, 479–511 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 95.
    Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36(1), 48–49 (1950) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 96.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 98.
    Owen, G.: Game Theory, 3rd edn. Academic Press, San Diego (1995) Google Scholar
  16. 118.
    Pavel, L.: A noncooperative game approach to OSNR optimization in optical networks. IEEE Trans. Autom. Control 51(5), 848–852 (2006) MathSciNetCrossRefGoogle Scholar
  17. 127.
    Robinson, J.: An iterative method of solving a game. Ann. Math. 54, 296–301 (1951) zbMATHCrossRefGoogle Scholar
  18. 132.
    Sandholm, W.H.: Population Games and Evolutionary Dynamics. Cambridge University Press, Cambridge (2009) Google Scholar
  19. 133.
    Saraydar, C., Mandayam, N.B., Goodman, D.J.: Pricing and power control in a multicell wireless data network. IEEE J. Sel. Areas Commun. 19(10), 1883–1892 (2001) CrossRefGoogle Scholar
  20. 137.
    Shamma, J.S., Arslan, G.: Dynamic fictitious play, dynamic gradient play and distributed convergence to Nash equilibria. IEEE Trans. Autom. Control 50(1), 312–326 (2005) MathSciNetCrossRefGoogle Scholar
  21. 141.
    Smith, J.M.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 7, 209–221 (1974) CrossRefGoogle Scholar
  22. 142.
    Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973) CrossRefGoogle Scholar
  23. 158.
    Vincent, T.L., Brown, J.S.: Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics. Cambridge University Press, Cambridge (2005) zbMATHCrossRefGoogle Scholar
  24. 159.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations