Games for Routing and Path Coloring

  • Lacra PavelEmail author
Part of the Static & Dynamic Game Theory: Foundations & Applications book series (SDGTFA)


This chapter provides and overview of routing and path coloring problems in all-optical networks as noncooperative games. We focus on oblivious payment functions, that is, functions that charge a player according to its own strategy only. We review results on the relation between such games and online routing and path coloring. In particular, these results show that the Price of Anarchy of such games is lower-bounded by, and in several cases precisely equal to, the competitive ratio of appropriate modifications of the First Fit algorithm.


Nash Equilibrium Optical Network Wavelength Division Multiplex Online Algorithm Price Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 23.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability—towards tight results. SIAM J. Comput. 27, 804–915 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 26.
    Bilo, V., Flammini, M., Moscardelli, L.: On Nash equilibria in non-cooperative all-optical networks. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 448–459. Springer, Berlin (2005) CrossRefGoogle Scholar
  3. 27.
    Bilo, V., Flammini, M., Moscardelli, L.: On Nash Equilibria in Non-cooperative All-Optical Networks. Optical Switching and Networking (2010) Google Scholar
  4. 28.
    Bilo, V., Moscardelli, L.: The price of anarchy in all-optical networks. In: S’ykora, R.O. (ed.) SIROCCO 2004. LNCS, vol. 3104, pp. 13–22. Springer, Heidelberg (2004) Google Scholar
  5. 39.
    Erlebach, T., Jansen, K., Kaklamanis, C., Persiano, P.: Optimal wavelength routing on directed fiber trees. Theor. Comput. Sci. 221(1–2), 119–137 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 42.
    Fanelli, A., et al.: Game theoretical issues in optical networks. In: Proceedings of ÊICTON 2006, Sep. (2006) Google Scholar
  7. 51.
    Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebr. Discrete Methods 1(2), 216–227 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 52.
    Gargano, L., Vaccaro, U.: Routing in all-optical networks: algorithmic and graph theoretic problems. In: Numbers, Information and Complexity, pp. 555–578. Kluwer Academic, Dordrecht (2000) Google Scholar
  9. 53.
    Georgakopoulos, G.F., Kavvadias, D.J., Sioutis, L.G.: Nash equilibria in all-optical networks. Discrete Math. 309(13), 4332–4342 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 73.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Proceedings of the 16th Annual Symposium STACS, pp. 404–413 (1999) Google Scholar
  11. 86.
    Milis, I., Pagourtzis, A., Potika, K.: Selfish routing and path coloring in all-optical networks. In: Proceedings of CAAN2007, pp. 71–84 (2007) Google Scholar
  12. 95.
    Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36(1), 48–49 (1950) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 99.
    Ozdaglar, A., Bertsekas, D.: Routing and wavelength assignment in optical networks. IEEE/ACM Trans. Netw. 11(2), 259–272 (2003) CrossRefGoogle Scholar
  14. 125.
    Ramaswami, R., Sivarajan, K.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995) CrossRefGoogle Scholar
  15. 126.
    Ramaswami, R., Sivarajan, K.N.: Optical Networks: A Practical Perspective, 2nd edn. Academic Press, San Diego (2002) Google Scholar
  16. 130.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002) MathSciNetCrossRefGoogle Scholar
  17. 140.
    Slusarek, M.: Optimal online colouring of circular arc graphs. Inform. Theor. Appl. 29(5), 423–429 (1995) MathSciNetzbMATHGoogle Scholar
  18. 160.
    Yaiche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Trans. Netw. 8(5), 667–678 (2000) CrossRefGoogle Scholar
  19. 162.
    Yassine, A., et al.: Competitive game theoretic optimal routing in optical networks. In: Proceedings SPIE, May, pp. 27–36 (2002) CrossRefGoogle Scholar
  20. 165.
    Zang, H., Jue, J., Mukherjee, B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1(1), 47–60 (2000) Google Scholar
  21. 166.
    Zhu, H., Mukherjee, B.: Online connection provisioning in metro optical WDM networks using reconfigurable OADMs. IEEE/OSA J. Lightwave Technol. 23(10), 2893–2901 (2005) CrossRefGoogle Scholar
  22. 167.
    Zhu, K., Mukherjee, B.: Traffic grooming in an optical WDM mesh network. IEEE J. Sel. Areas Commun. 20(1), 122–133 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations