Advertisement

Shearlets pp 105-144 | Cite as

Multivariate Shearlet Transform, Shearlet Coorbit Spaces and Their Structural Properties

Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter is devoted to the generalization of the continuous shearlet transform to higher dimensions as well as to the construction of associated smoothness spaces and to the analysis of their structural properties, respectively. To construct canonical scales of smoothness spaces, so-called shearlet coorbit spaces, and associated atomic decompositions and Banach frames we prove that the general coorbit space theory of Feichtinger and Gröchenig is applicable for the proposed shearlet setting. For the two-dimensional case we show that for large classes of weights, variants of Sobolev embeddings exist. Furthermore, we prove that for natural subclasses of shearlet coorbit spaces which in a certain sense correspond to “cone-adapted shearlets” there exist embeddings into homogeneous Besov spaces. Moreover, the traces of the same subclasses onto the coordinate axis can again be identified with homogeneous Besov spaces. These results are based on the characterization of Besov spaces by atomic decompositions and rely on the fact that shearlets with compact support can serve as analyzing vectors for shearlet coorbit spaces. Finally, we demonstrate that the proposed multivariate shearlet transform can be used to characterize certain singularities.

Key words

Atomic decompositions Banach frames Coorbit theory Embeddings Multivariate shearlet transform Singularity analysis Smoothness spaces Traces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Adams, Sobolev Spaces, Academic Press, Now York, 1975.MATHGoogle Scholar
  2. 2.
    L. Borup and M. Nielsen, Frame decomposition of decomposition spaces, J. Fourier Anal. Appl. 13 (2007), 39 - 70.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    E. J. Candès and D. L. Donoho, Ridgelets: a key to higher-dimensional intermittency?, Phil. Trans. R. Soc. Lond. A. 357 (1999), 2495 - 2509.MATHCrossRefGoogle Scholar
  4. 4.
    E. J. Candès and D. L. Donoho, Curvelets - A surprisingly effective nonadaptive representation for objects with edges, in Curves and Surfaces, L. L. Schumaker et al., eds., Vanderbilt University Press, Nashville, TN (1999).Google Scholar
  5. 5.
    E. J. Candès and D. L. Donoho, Continuous curvelet transform: I. Resolution of the wavefront set, Appl. Comput. Harmon. Anal. 19 (2005), 162 - 197.Google Scholar
  6. 6.
    E. Cordero, F. De Mari, K. Nowak and A. Tabacco, Analytic features of reproducing groups for the metaplectic representation. J. Fourier Anal. Appl., 12(2) (2006), 157 - 180.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    S. Dahlke, M. Fornasier, H. Rauhut, G. Steidl, and G. Teschke, Generalized coorbit theory, Banach frames, and the relations to alpha–modulation spaces, Proc. Lond. Math. Soc. 96 (2008), 464 - 506.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. Dahlke, S. Häuser, G. Steidl, and G. Teschke, Coorbit spaces: traces and embeddings in higher dimensions, Preprint 11-2, Philipps Universität Marburg (2011).Google Scholar
  9. 9.
    S. Dahlke, S. Häuser, and G. Teschke, Coorbit space theory for the Toeplitz shearlet transform, to appear in Int. J. Wavelets Multiresolut. Inf. Process.Google Scholar
  10. 10.
    S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 157 - 181.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal. 27/2 (2009), 195 - 214.Google Scholar
  12. 12.
    S. Dahlke, G. Steidl, and G. Teschke, The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. Appl. 16 (2010), 340 - 354.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    S. Dahlke, G. Steidl and G. Teschke, Shearlet Coorbit Spaces: Compactly Supported Ana- lyzing Shearlets, Traces and Embeddings, J. Fourier Anal. Appl., DOI10.1007/s00041-011-9181-6.Google Scholar
  14. 14.
    S. Dahlke and G. Teschke, The continuous shearlet transform in higher dimensions: Variations of a theme, in Group Theory: Classes, Representations and Connections, and Applications (C. W. Danelles, Ed.), Nova Publishers, p. 167 - 175, 2009.Google Scholar
  15. 15.
    R. DeVore, Nonlinear Approximation, Acta Numerica 7 (1998), 51 - 150.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. DeVore and V.N. Temlyakov, Some remarks on greedy algorithms, Adv. in Comput.Math. 5 (1996), 173 - 187.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing 14(12) (2005), 2091 - 2106.MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Proc. Conf. “Function Spaces and Applications”, Lund 1986, Lecture Notes in Math. 1302 (1988), 52 - 73.Google Scholar
  19. 19.
    H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition I, J. Funct. Anal. 86 (1989), 307 - 340.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition II, Monatsh. Math. 108 (1989), 129 - 148.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    H. G. Feichtinger and K. Gröchenig, Non–orthogonal wavelet and Gabor expansions and group representations, in: Wavelets and Their Applications, M.B. Ruskai et.al. (eds.), Jones and Bartlett, Boston, 1992, 353 - 376.Google Scholar
  22. 22.
    G. B. Folland, Fourier Analysis and its Applications, Brooks/Cole Publ. Company, Boston, 1992.MATHGoogle Scholar
  23. 23.
    M. Frazier and B. Jawerth, Decomposition of Besov sapces, Indiana University Mathematics Journal 34/4 (1985), 777 - 799.Google Scholar
  24. 24.
    K. Gröchenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1 - 42.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    K. Gröchenig, Foundations of Time–Frequency Analysis, Birkhäuser, Boston, Basel, Berlin, 2001.MATHGoogle Scholar
  26. 26.
    K. Gröchenig, E. Kaniuth and K.F. Taylor, Compact open sets in duals and projections in L 1 -algebras of certain semi-direct product groups, Math. Proc. Camb. Phil. Soc. 111 (1992), 545 - 556.MATHCrossRefGoogle Scholar
  27. 27.
    K. Gröchenig and S. Samarah, Nonlinear approximation with local Fourier bases, Constr. Approx. 16 (2000), 317 - 331.MathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Guo, W. Lim, D. Labate, G. Weiss, and E. Wilson, Wavelets with composite dilations and their MRA properties, Appl. Comput. Harmon. Anal. 20 (2006), 220 - 236.MathSciNetCrossRefGoogle Scholar
  29. 29.
    K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representations using anisotropic dilation und shear operators, in Wavelets und Splines (Athens, GA, 2005), G. Chen und M. J. Lai, eds., Nashboro Press, Nashville, TN (2006), 189 - 201.Google Scholar
  30. 30.
    L.I. Hedberg and Y. Netrusov, An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Memoirs of the American Math. Soc. 188, 1- 97 (2007).MathSciNetGoogle Scholar
  31. 31.
    P. Kittipoom, G. Kutyniok, and W.-Q Lim, Construction of compactly supported shearlet frames, Preprint, 2009.Google Scholar
  32. 32.
    G. Kutyniok and D. Labate, Resolution of the wavefront set using continuous shearlets, Trans. Amer. Math. Soc. 361 (2009), 2719 - 2754.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    G. Kutyniok, J. Lemvig, and W.-Q. Lim, Compactly supported shearlets, Approximation Theory XIII (San Antonio, TX, 2010), Springer, to appear.Google Scholar
  34. 34.
    R. S. Laugesen, N. Weaver, G. L. Weiss and E. N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets, The Journal of Geom. Anal. 12/1 (2002), 89 - 102.Google Scholar
  35. 35.
    Y. Lu and M.N. Do, Multidimensional directional filterbanks and surfacelets, IEEE Trans. Image Process. 16 (2007), 918 - 931.MathSciNetCrossRefGoogle Scholar
  36. 36.
    C. Schneider, Besov spaces of positive smoothness, PhD thesis, University of Leipzig, 2009.Google Scholar
  37. 37.
    H. Triebel, Function Spaces I, Birkhäuser, Basel - Boston - Berlin, 2006Google Scholar
  38. 38.
    S. Yi, D. Labate, G. R. Easley, and H. Krim, A shearlet approach to edge analysis and detection, IEEE Trans. Image Process. 16 (2007), 918 - 931.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.FB12 Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany
  2. 2.Fachbereich MathematikUniversität KaiserslauternKaiserslauternGermany
  3. 3.Institute for Computational Mathematics in Science and TechnologyHochschule Neubrandenburg - University of Applied SciencesNeubrandenburgGermany

Personalised recommendations