Skip to main content

Structure and Representation Theory of Kac–Moody Superalgebras

  • Chapter
Highlights in Lie Algebraic Methods

Part of the book series: Progress in Mathematics ((PM,volume 295))

Abstract

The aim of these lecture notes is to give an introduction to the structure and representation theory of Lie superalgebras.

We start by reviewing some basic facts about finite-dimensional and Kac–Moody Lie superalgebras. Then we review the classification of Kac–Moody superalgebras of finite growth and give a survey of results about highest weight integrable representations of Kac–Moody Lie superalgebras.

In the last section we discuss the representation theory of finite-dimensional superalgebras. We formulate an analogue of a theorem of Harish-Chandra and review some geometric methods: associated variety and the Borel–Weil–Bott theorem. We omit all long and technical proofs referring to the original papers but try to explain the main ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we list only exceptional Lie superalgebras \(\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}\) with \(\mathfrak{g}_{1}\ne 0\).

  2. 2.

    We modify Kac’s original notation in order to avoid confusion with the usual Lie algebra F 4.

  3. 3.

    W(0|n) is simple if n≥2.

References

  1. J. Bernstein, D. Leites, Irreducible representations of finite-dimensional Lie superalgebras of series W and S. C. R. Acad. Bulgare Sci. 32 (1979), no. 3, 277–278.

    MathSciNet  MATH  Google Scholar 

  2. J. Bernstein, D. Leites, A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series Gl and sl. C. R. Acad. Bulgare Sci. 33 (1980), no. 8, 1049–1051 (Russian).

    MathSciNet  MATH  Google Scholar 

  3. J. Brundan, Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n). J. Am. Math. Soc. 16 (2003), no. 1, 185–231.

    Article  MATH  Google Scholar 

  4. J. Brundan, Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \({\mathfrak{q}}(n)\). Adv. Math. 182 (2004), no. 1, 28–77.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. Newton Institute, Preprint, 2009.

    Google Scholar 

  6. S. J. Cheng, N. Lam, W. Wang, Super duality and irreducible characters of orthosymplectic Lie superalgebras, arXiv:0911.0129v1.

  7. M. Duflo, V. Serganova, On associated variety for Lie superalgebras, math/0507198.

  8. M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, arXiv:0905.1181, to appear in J. Algebra.

  9. M. Gorelik, Weyl denominator identity for affine Lie superalgebras with non-zero dual Coxeter number, arXiv:0911.5594, to appear in J. Algebra.

  10. M. Gorelik, The Kac construction of the centre of \(U(\mathfrak{g})\) for Lie superalgebras. J. Nonlinear Math. Phys. 11 (2004), no. 3, 325–349.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Gorelik, V. Kac, On simplicity of vacuum modules. Adv. Math. 211 (2007), no. 2, 621–677.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gorelik, V. Serganova, On representations of the affine superalgebra \({\mathfrak{q}}(n)^{(2)}\). Mosc. Math. J. 8 (2008), no. 1, 91–109, 184.

    MathSciNet  MATH  Google Scholar 

  13. C. Gruson, V. Serganova, Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras, Proceedings of the London Mathematical Society, doi:10.1112/plms/pdq014.

  14. C. Hoyt, V. Serganova, Classification of finite-growth general Kac–Moody superalgebras. Commun. Algebra 35 (2007), no. 3, 851–874.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Hoyt, Regular Kac–Moody superalgebras and integrable highest weight modules. J. Algebra, doi:10.1016/j.jalgebra.2010.09.007.

  16. N.I. Ivanova, A.L. Onishchik, Parabolic subalgebras and gradings of reductive Lie superalgebras, J. Math. Sci. 152 (2008), no. 1, 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Van der Jeugt, Character formulae for Lie superalgebra C(n), Commun. Algebra 19, (1991), no. 1, 199–222.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Van der Jeugt, J. W. B. Hughes, R. C. King, J. Thierry-Mieg, A character formula for singly atypical modules of Lie superalgebra sl(m,n), Commun. Algebra 18, (1990), no. 10, 3453–3480.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Kac, Lie superalgebras. Adv. Math. 26 (1977), no. 1, 8–96.

    Article  MATH  Google Scholar 

  20. V. Kac, Characters of typical representations of classical Lie superalgebras. Commun. Algebra 5 (1977), no. 8, 889–897.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Kac, Infinite-dimensional algebras, Dedekind’s η-function, classical Moebius function and the very strange formula. Adv. Math. 30 (1978), no. 2, 85–136.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Kac, D. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras. Adv. Math. 34 (1979), no. 1, 97–108.

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions. Proc. Natl. Acad. Sci. USA 81 (1984), no. 2, 645–647. Phys. Sci.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Kac, J. van de Leur, On classification of superconformal algebras, Strings ’88 (College Park, MD, 1988), 77–106.

    Google Scholar 

  25. V. Kac, Infinite-dimensional Lie algebras. 3rd edition. Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  26. V. Kac, M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory. Lie theory and geometry, 415–456, Progr. Math., 123, Birkhäuser, Boston, MA, 1994.

    Google Scholar 

  27. B. Kostant, Graded manifolds, graded Lie theory, and prequantization. Lecture Notes in Mathematics 570. Berlin, Springer, 1977, 177–306.

    Google Scholar 

  28. J.L. Koszul, Graded manifolds and graded Lie algebras. International Meeting on Geometry and Physics, Pitagora, Bologna, 1982, 71–84.

    Google Scholar 

  29. J. van de Leur, A classification of contragredient superalgebras of finite growth. Commun. Algebra 17 (1989), no. 8, 1815–1841.

    MathSciNet  MATH  Google Scholar 

  30. Yu. Manin, Gauge field theory and complex geometry. Translated from the 1984 Russian original by N. Koblitz and J. R. King. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 289. Springer, Berlin, 1997.

    Google Scholar 

  31. Yu. Manin, I. Penkov, A. Voronov, Elements of supergeometry. J. Sov. Math. 51 (1990), no. 1, 2069–2083 (Russian).

    Article  MATH  Google Scholar 

  32. I. Penkov, Characters of strongly generic irreducible Lie superalgebra representations. Int. J. Math. 9 (1998), no. 3, 331–366.

    Article  MathSciNet  MATH  Google Scholar 

  33. I. Penkov, Borel–Weil–Bott theory for classical Lie supergroups. J. Sov. Math. 51 (1990), no. 1, 2108–2140 (Russian).

    Article  MATH  Google Scholar 

  34. I. Penkov, V. Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras. Int. J. Math. 5 (1994), no. 3, 389–419.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Penkov, V. Serganova, Characters of irreducible G-modules and cohomology of G/P for the Lie supergroup G=Q(N). Algebraic geometry, 7. J. Math. Sci. (N.Y.) 84 (1997), no. 5, 1382–1412.

    Article  MATH  Google Scholar 

  36. J.C. Santos, Foncteurs de Zuckerman pour les superalgebres de Lie. J. Lie Theory 9 (1999), no. 1, 69–112. (French, English summary) [Zuckerman functors for Lie superalgebras].

    MathSciNet  MATH  Google Scholar 

  37. V. Serganova, Kazhdan–Lusztig polynomials and character formula for the Lie superalgebra gl(m|n). Sel. Math. New Ser. 2 (1996), no. 4, 607–651.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Serganova, Characters of irreducible representations of simple Lie superalgebras. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998).

    Google Scholar 

  39. V. Serganova, Kac–Moody superalgebras and integrability. Developments and trends in infinite-dimensional Lie theory, 169–218, Progr. Math., 288, Birkhäuser, Boston, MA, 2011.

    Chapter  Google Scholar 

  40. A. Sergeev, The invariant polynomials on simple Lie superalgebras. Represent. Theory 3 (1999), 250–280.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Shapovalov, Finite-dimensional irreducible representations of Hamiltonian Lie superalgebras. Mat. Sb. (N.S.) 107(149) (1978), no. 2, 259–274, 318 (Russian).

    MathSciNet  MATH  Google Scholar 

  42. E. Vishnyakova, On complex Lie supergroups and split homogeneous supermanifolds. Transform. Groups 16 (2011), 265–285.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Zuckerman, Generalized Harish-Chandra modules. Highlights in Lie algebraic methods, 123–143, Progr. Math., 295, Birkhäuser, Boston, MA, 2012 (lectures in this book)

    Chapter  Google Scholar 

Download references

Acknowledgements

I thank Sergey Shashkov and Alexander Shapiro for preparing a preliminary version of the manuscript based on the notes they took during the lectures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Serganova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Serganova, V. (2012). Structure and Representation Theory of Kac–Moody Superalgebras. In: Joseph, A., Melnikov, A., Penkov, I. (eds) Highlights in Lie Algebraic Methods. Progress in Mathematics, vol 295. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8274-3_3

Download citation

Publish with us

Policies and ethics