Skip to main content

Paradoxes: What Are They Good For?

  • Chapter
  • First Online:
Excursions in the History of Mathematics
  • 3088 Accesses

Abstract

A paradox has been described as a truth standing on its head to attract attention. Undoubtedly, paradoxes captivate. They also cajole, provoke, amuse, exasperate, and seduce. More importantly, they arouse curiosity, they stimulate, and they motivate. In this chapter we present examples of paradoxes from the history of mathematics which have inspired the clarification of basic concepts and the introduction of major results. Our examples will deal with numbers, logarithms, functions, continuity, tangents, infinite series, sets, curves, and decomposition of geometric objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Akin, A spiteful computer: a determinism paradox, Math. Intell. 14:2 (1992) 45-47.

    Article  MathSciNet  Google Scholar 

  2. R. Arnot and K. Small, The economics of traffic congestion, Amer. Scientist 82 (Sept. 1994) 446-455.

    Google Scholar 

  3. T. Bass, Road to ruin, Discover 13:5 (May 1993) 56-61.

    MathSciNet  Google Scholar 

  4. E. T. Bell, The Development of Mathematics, 2nd ed., McGraw-Hill, 1945.

    Google Scholar 

  5. L. M. Blumenthal, A paradox, a paradox, a most ingenious paradox, Amer. Math. Monthly 47 (1940) 346-353.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Bolzano, Paradoxes of the Infinite, Routledge and Kegan Paaul, 1950 (orig. 1848).

    Google Scholar 

  7. H. J. M. Bos, On the representation of curves in Descartes’ Géométrie, Arch. Hist.Exact Sc. 24 (1981) 295-338.

    Google Scholar 

  8. U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.

    Google Scholar 

  9. V. M. Bradis et al, Lapses in Mathematical Reasoning, The Macmillan Co., 1963.

    Google Scholar 

  10. F. Cajori, History of exponential and logarithmic concepts, Amer. Math. Monthly 20 (1913) 5-14, 35-47, 75-84, 107-117, 148-151, 173-182, 205-210.

    Google Scholar 

  11. M. T. Carroll et al, The wallet paradox revisited, Math. Mag. 74 (2001) 378-383.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Case, Paradoxes involving conflicts of interest, Amer. Math. Monthly 107 (2000) 33-43.

    Article  MathSciNet  Google Scholar 

  13. T. Chow, The surprise examination or unexpected hanging paradox, Amer. Math. Monthly 105 (1998) 41-51.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. J. Davis, The Mathematics of Matrices, Blaisdell, 1965.

    Google Scholar 

  15. P. J. Davis, Number, ScientificAmer. 211 (Sept. 1964) 51-59.

    Google Scholar 

  16. A. De Morgan, A Budget of Paradoxes, Open Court, 1915 (orig. 1872).

    Google Scholar 

  17. C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.

    Google Scholar 

  18. N. Faletta, The Paradoxicon, Doubleday & Co., 1983.

    Google Scholar 

  19. P. Fjelstad, The repeating integer paradox, Coll. Math. Jour. 26 (1995) 11-15.

    Article  Google Scholar 

  20. J. Fleron, Gabriel’s wedding cake, Coll. Math. Jour. 30 (1999) 35-38.

    Article  Google Scholar 

  21. D. Gale, Paradoxes and a pair of boxes, Math. Intellligencer 13:2 (1991) 31-33.

    Article  Google Scholar 

  22. M. Gardner, Mathematical games, in which ‘monster’ curves force redefinition of the word ‘curve,’ ScientificAmer. 235 (Dec. 1976) 124-133.

    Article  Google Scholar 

  23. R. J. Gardner and S. Wagon, At long last the circle has been squared, Notices Amer. Math. Soc. 36 (1989) 1338-1343.

    MATH  MathSciNet  Google Scholar 

  24. R. Gethner, Can you paint a can of paint? Coll. Math. Jour. 36 (2005) 400-402.

    Article  Google Scholar 

  25. R. K. Guy, The strong law of small numbers, Amer. Math. Monthly 95 (1988) 697-712.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Hahn, The crisis in intuition. In The World of Mathematics, ed. by J. R. Newman, Simon & Schuster, 1956, Vol. 3, pp. 1956-1976.

    Google Scholar 

  27. R. W. Hamming, The tennis ball paradox, Math. Mag. 62 (1989) 268-269.

    Article  MathSciNet  Google Scholar 

  28. P. J. Hilton et al, Mathematical Vistas, Springer, 2002.

    Google Scholar 

  29. E. Kasner and J. R. Newman, Mathematics and the Imagination, Simon & Schuster, 1967.

    Google Scholar 

  30. M. Kline, Mathematical Thought from Ancient to Modem Times, Oxford Univ. Press, 1972.

    Google Scholar 

  31. J. Kocik, Proof without words: Simpson’s paradox, Math. Mag. 74 (2001) 399.

    Article  MathSciNet  Google Scholar 

  32. I. Lakatos, Proofs and Refutations, Cambridge Univ. Press, 1976.

    MATH  Google Scholar 

  33. D. Laugwitz, Controversies about numbers and functions. In The Growth of Mathematical Knowledge, E. Grosholz and H. Berger (eds), Kluwer, 2000, pp. 177-198.

    Google Scholar 

  34. Leapfrogs, Imaginary Logarithms, E. G. M. Mann & Son (England), 1978.

    Google Scholar 

  35. E. Linzer, The two envelope paradox, Amer. Math. Monthly 10 (1994) 417-419.

    Article  MathSciNet  Google Scholar 

  36. J. Lützen, Euler’s vision of a generalized partial differential calculus for a generalized kind of function, Math. Mag. 56 (1983) 299-306.

    Article  MATH  MathSciNet  Google Scholar 

  37. P. Marchi, The controversy between Leibniz and Bernoulli on the nature of the logarithms of negative numbers, In Akten das II Inter. Leibniz-Kongress (Hanover, 1972), Bnd II, 1974, pp. 67-75.

    Google Scholar 

  38. E. A. Maxwell, Fallacies in Mathematics, Cambridge Univ. Press, 1961.

    Google Scholar 

  39. K. Menger, What is dimension?, Amer. Math. Monthly 50 (1943) 2-7.

    Article  MATH  MathSciNet  Google Scholar 

  40. K. G. Merryfield et al, The wallet paradox, Amer. Math. Monthly 104 (1997) 647-649.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence, Springer-Verlag, 1982.

    Google Scholar 

  42. E. Nagel, ‘Impossible numbers’: a chapter in the history of modern logic, Stud. in the Hist. of Ideas 3 (1935) 429-474.

    Google Scholar 

  43. P. J. Nahin, An Imaginary Tale: The Story of \(\sqrt{-1}\), Princeton Univ. Press, 1998.

    Google Scholar 

  44. R. Nelson, Pictures, probability, and paradox, Coll. Math. Jour. 10 (1979) 182-190.

    Google Scholar 

  45. E. P. Northrop, Riddles in Mathematics: A Book of Paradoxes, Van Nostrand, 1944.

    Google Scholar 

  46. Z. Pogoda and M. Sokolowski, Does mathematics distinguish certain dimenisons of space? Amer. Math. Monthly 104 (1997) 860-869.

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Rapoport, Escape from paradox, Sc. Amer. 217 (July 1967) 50-56.

    Article  Google Scholar 

  48. R. Remmert, Theory of Complex Functions, Springer-Verlag, 1991.

    Google Scholar 

  49. D. Saari, a chaotic exploration of aggregation paradoxes, SIAM Review 37:1 (March 1995) 37-52.

    Article  MATH  MathSciNet  Google Scholar 

  50. R. P. Savage, The paradox of nontransitive dice, Amer. Math. Monthly 101 (1994) 429-436.

    Article  MATH  MathSciNet  Google Scholar 

  51. P. Scholten and A. Simoson, The falling ladder paradox, Coll. Math. Jour. 27 (1996) 49-54.

    Article  Google Scholar 

  52. L. A. Steen, New models of the real-number line, Scientific Amer. 225 (Aug. 1971) 92-99.

    Article  MathSciNet  Google Scholar 

  53. G. Szekely and D. Richards, The St. Petersburg paradox and the crash of high-tech stocks in 2000, Amer. Statistician 58:3 (2004) 225-231.

    Google Scholar 

  54. H. Thurston, Can a graph be both continuous and discontinuous? Amer. Math. Monthly 96 (1989) 814-815.

    Article  MATH  MathSciNet  Google Scholar 

  55. B. L. Van der Waerden, Science Awakening I, Scholar’s Bookshelf, 1988 (orig. 1954).

    Google Scholar 

  56. N. Ya. Vilenkin, Stories About Sets, Academic Press, 1968.

    Google Scholar 

  57. K. Volkert, Zur Differentzierbarkeit stetiger Funktionen—Ampere’s Beweis und seine Folgen, Arch. Hist. Exact Sc. 40 (1989) 37-112.

    Article  MATH  MathSciNet  Google Scholar 

  58. K. Volkert, Die Geschichte der pathologischen Funktionen—Ein Beitrag zur Enstehung der mathematischen Methodologie, Arch. Hist. Exact Sc. 37 (1987) 193- 232.

    Article  MATH  MathSciNet  Google Scholar 

  59. S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985.

    MATH  Google Scholar 

  60. J. S. Walker, An elementary resolution of the liar paradox, Coll. Math. Jour. 35 (2004) 105-111.

    Article  Google Scholar 

  61. J. R. Weeks The twin paradox in a closed universe, Amer. Math. Monthly 108 (2001) 585-590.

    Article  MathSciNet  Google Scholar 

  62. G. T. Whyburn, What is a curve?, Amer. Math. Monthly 49 (1942) 493-497.

    Article  MATH  MathSciNet  Google Scholar 

  63. F. Zames, Surface area and the cylinder area paradox, Coll. Math. Jour. 8 (1977) 207-211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Kleiner .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kleiner, I. (2012). Paradoxes: What Are They Good For?. In: Excursions in the History of Mathematics. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8268-2_8

Download citation

Publish with us

Policies and ethics