Codes from Modular Curves

  • David JoynerEmail author
  • Jon-Lark Kim
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


One of the most interesting class of curves, from the perspective of arithmetical algebraic geometry, are the so-called modular curves. Some of the most remarkable applications of algebraic geometry to coding theory arise from these modular curves. It turns out these algebraic-geometric codes (“AG codes”) constructed from modular curves can have parameters which beat the Gilbert–Varshamov lower bound if the ground field is sufficiently large.


Congruence Subgroup Modular Curve Rational Compactification Shimura Variety Modular Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [A1]
    Adler, A.: The Mathieu group M11 and the modular curve X11. Proc. Lond. Math. Soc. 74, 1–28 (1997)MathSciNetCrossRefGoogle Scholar
  2. [A2]
    Adler, A.: Some integral representations of \(\mathit{PSL}_{2}(\mathbb{F}_{p})\) and their applications. J. Algebra 72, 115–145 (1981) MathSciNetCrossRefGoogle Scholar
  3. [BCG]
    Bending, P., Camina, A., Guralnick, R.: Automorphisms of the modular curve X(p) in positive characteristic. Preprint (2003)Google Scholar
  4. [B]
    Birch, B.J.: Some calculations of modular relations. In: Kuyk, W. (ed.) Modular Forms of One Variable, I, Proc. Antwerp Conf., 1972. Lecture Notes in Math., vol. 320. Springer, New York (1973)Google Scholar
  5. [BK]
    Birch, B.J., Kuyk, W. (eds.): Modular forms of one variable, IV, Proc. Antwerp Conf., 1972. Lecture Notes in Math., vol. 476. Springer, New York (1975)Google Scholar
  6. [Bo]
    Borne, N.: Une formule de Riemann-Roch equivariante pour des courbes. Thesis, Univ. Bordeaux (1999). Available from:
  7. [Cas1]
    Casselman, W.: On representations of GL2 and the arithmetic of modular curves. In: Modular Functions of One Variable, II, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 349, pp. 107–141. Springer, Berlin (1973). Errata to On representations of GL2 and the arithmetic of modular curves. In: Modular Functions of One Variable, IV, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 476, pp. 148–149. Springer, Berlin (1975)CrossRefGoogle Scholar
  8. [Cas2]
    Casselman, W.: The Hasse–Weil ζ-function of some moduli varieties of dimension greater than one. In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore, 1977. Proc. Sympos. Pure Math. Part 2, vol. XXXIII, pp. 141–163. Am. Math. Soc., Providence (1979)CrossRefGoogle Scholar
  9. [Cl]
    Clozel, L.: Nombre de points des variétés de Shimura sur un corps fini (d’aprés R. Kottwitz). Seminaire Bourbaki, vol. 1992/93. Asterisque No. 216 (1993), Exp. No. 766, 4, 121–149Google Scholar
  10. [Co]
    Cohen, P.: On the coefficients of the transformation polynomials for the elliptic modular function. Math. Proc. Camb. Philos. Soc. 95, 389–402 (1984)MathSciNetCrossRefGoogle Scholar
  11. [Del]
    Deligne, P.: Variétés de Shimura. In: Automorphic Forms, Representations and L-Functions. Proc. Sympos. Pure Math. Part 2, vol. 33, pp. 247–290 (1979)CrossRefGoogle Scholar
  12. [DL]
    Duflo, M., Labesse, J.-P.: Sur la formule des traces de Selberg. Ann. Sci. Ecole Norm. Super. (4) 4, 193–284 (1971)MathSciNetCrossRefGoogle Scholar
  13. [Ei]
    Eichler, M.: The basis problem for modular forms and the traces of Hecke operators. In: Modular Functions of One Variable, I, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 320, pp. 1–36. Springer, Berlin (1973)CrossRefGoogle Scholar
  14. [E1]
    Elkies, N.: Elliptic and modular curves over finite fields and related computational issues. In: Buell, D., Teitelbaum, J. (eds.) Computational Perspectives on Number Theory. AMS/IP Studies in Adv. Math., vol. 7, pp. 21–76 (1998)CrossRefGoogle Scholar
  15. [E2]
    Elkies, N.: The Klein quartic in number theory, In: Levy, S. (ed.) The Eightfold Way: The Beauty of Klein’s Quartic Curve, pp. 51–102. Cambridge Univ. Press, Cambridge (1999)Google Scholar
  16. [FM]
    Frey, G., Müller, M.: Arithmetic of modular curves and applications. Preprint (1998). Available:
  17. [FH]
    Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, Berlin (1991)zbMATHGoogle Scholar
  18. [GAP]
    The GAP Group: GAP—Groups, algorithms, and programming. Version 4.4.10 (2007).
  19. [Gel]
    Gelbart, S.: Elliptic curves and automorphic representations. Adv. Math. 21(3), 235–292 (1976)MathSciNetCrossRefGoogle Scholar
  20. [Go]
    Göb, N.: Computing the automorphism groups of hyperelliptic function fields. Preprint. Available:
  21. [G1]
    Goppa, V.D.: Geometry and Codes. Kluwer, Amsterdam (1988)CrossRefGoogle Scholar
  22. [Ha]
    Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)CrossRefGoogle Scholar
  23. [HM]
    Hibino, T., Murabayashi, N.: Modular equations of hyperelliptic X0(N) and an application. Acta Arith. 82, 279–291 (1997)MathSciNetCrossRefGoogle Scholar
  24. [HP1]
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge Univ. Press, Cambridge (2003)CrossRefGoogle Scholar
  25. [Ig]
    Igusa, J.: On the transformation theory of elliptic functions. Am. J. Math. 81, 436–452 (1959)MathSciNetCrossRefGoogle Scholar
  26. [I]
    Ihara, Y.: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo 28, 721–724 (1981)MathSciNetzbMATHGoogle Scholar
  27. [IR]
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Grad Texts, vol. 84. Springer, Berlin (1982)zbMATHGoogle Scholar
  28. [JK1]
    Joyner, D., Ksir, A.: Modular representations on some Riemann-Roch spaces of modular curves X(N). In: Shaska, T. (ed.) Computational Aspects of Algebraic Curves. Lecture Notes in Computing. World Scientific, Singapore (2005)zbMATHGoogle Scholar
  29. [JK2]
    Joyner, D., Ksir, A.: Decomposing representations of finite groups on Riemann-Roch spaces. Proc. Am. Math. Soc. 135, 3465–3476 (2007)CrossRefGoogle Scholar
  30. [JKT]
    Joyner, D., Ksir, A., Traves, W.: Automorphism groups of generalized Reed-Solomon codes. In: Shaska, T., Huffman, W.C., Joyner, D., Ustimenko, V. (eds.) Advances in Coding Theory and Cryptology. Series on Coding Theory and Cryptology, vol. 3. World Scientific, Singapore (2007)Google Scholar
  31. [JS]
    Joyner, D., Shokranian, S.: Remarks on codes from modular curves: MAPLE applications. In: Joyner, D. (ed.) Coding Theory and Cryptography: From the Geheimschreiber and Enigma to Quantum Theory. Springer, Berlin (2000). Available at CrossRefGoogle Scholar
  32. [KP]
    Khare, C., Prasad, D.: Extending local representations to global representations. Kyoto J. Math. 36, 471–480 (1996)MathSciNetCrossRefGoogle Scholar
  33. [Kn]
    Knapp, A.: Elliptic Curves, Mathematical Notes. Princeton Univ. Press, Princeton (1992)Google Scholar
  34. [Kob]
    Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Grad. Texts, vol. 97. Springer, Berlin (1984)zbMATHGoogle Scholar
  35. [K1]
    Kottwitz, R.: Shimura varieties and λ-adic representations. In: Automorphic Forms, Shimura Varieties, and L-functions, vol. 1, pp. 161–209. Academic Press, San Diego (1990)zbMATHGoogle Scholar
  36. [K2]
    Kottwitz, R.: Points on Shimura varieties over finite fields. J. Am. Math. Soc. 5, 373–444 (1992)MathSciNetCrossRefGoogle Scholar
  37. [Lab]
    Labesse, J.P.: Exposé VI. In: Boutot, J.-F., Breen, L., Gŕardin, P., Giraud, J., Labesse, J.-P., Milne, J.S., Soulé, C. (eds.) Variétés de Shimura et fonctions L. Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], 6. Universite de Paris VII, U.E.R. de Mathematiques, Paris (1979)Google Scholar
  38. [Lan1]
    Langlands, R.P.: Shimura varieties and the Selberg trace formula. Can. J. Math. XXIX(5), 1292–1299 (1977)MathSciNetCrossRefGoogle Scholar
  39. [Lan2]
    Langlands, R.P.: On the zeta function of some simple Shimura varieties. Can. J. Math. XXXI(6), 1121–1216 (1979)MathSciNetCrossRefGoogle Scholar
  40. [Li]
    Li, W.: Modular curves and coding theory: a survey. In: Contemp. Math. vol. 518, 301–314. AMS, Providence (2010). Available: Google Scholar
  41. [LvdG]
    Lint, J., van der Geer, G.: Introduction to Coding Theory and Algebraic Geometry. Birkhäuser, Boston (1988)CrossRefGoogle Scholar
  42. [Lo]
    Lorenzini, D.: An Invitation to Arithmetic Geometry. Grad. Studies in Math. AMS, Providence (1996)CrossRefGoogle Scholar
  43. [MS]
    MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  44. [Mo]
    Moreno, C.: Algebraic Curves over Finite Fields: Exponential Sums and Coding Theory. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  45. [Nara]
    Narasimhan, R.: Complex Analysis of One Variable. Basel (1985)CrossRefGoogle Scholar
  46. [NX]
    Nieddereiter, H., Xing, C.P.: Algebraic Geometry in Coding Theory and Cryptography. Princeton Univ. Press, Princeton (2009)Google Scholar
  47. [O1]
    Ogg, A.: Elliptic curves with wild ramification. Am. J. Math. 89, 1–21 (1967)MathSciNetCrossRefGoogle Scholar
  48. [O2]
    Ogg, A.: Modular Forms and Dirichlet series. Benjamin, Elmsford (1969). See also his paper in Modular Functions of One Variable, I, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 320, pp. 1–36. Springer, Berlin (1973)zbMATHGoogle Scholar
  49. [PSvW]
    Pellikaan, R., Shen, B.-Z., Van Wee, G.J.M.: Which linear codes are algebraic-geometric? IEEE Trans. Inf. Theory 37, 583–602 (1991). Available: MathSciNetCrossRefGoogle Scholar
  50. [P]
    Pretzel, O.: Codes and Algebraic Curves. Oxford Lecture Series, vol. 9. Clarendon, Oxford (1998)zbMATHGoogle Scholar
  51. [R1]
    Ritzenthaler, C.: Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis. Thesis, Univ. Paris 7 (2003)Google Scholar
  52. [R2]
    Ritzenthaler, C.: Action du groupe de Mathieu M11 sur la courbe modulaire X(11) en caractéristique 3. Masters thesis, Univ. Paris 6 (1998)Google Scholar
  53. [R3]
    Ritzenthaler, C.: Automorphismes des courbes modulaires X(n) en caractristique p. Manuscr. Math. 109, 49–62 (2002)CrossRefGoogle Scholar
  54. [Ro]
    Rovira, J.G.: Equations of hyperelliptic modular curves. Ann. Inst. Fourier, Grenoble 41, 779–795 (1991)MathSciNetCrossRefGoogle Scholar
  55. [S]
    The SAGE Group: SAGE: Mathematical software, Version 4.6.
  56. [Sc]
    Schoen, C.: On certain modular representations in the cohomology of algebraic curves. J. Algebra 135, 1–18 (1990)MathSciNetCrossRefGoogle Scholar
  57. [Se2]
    Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)CrossRefGoogle Scholar
  58. [Shim]
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  59. [ShimM]
    Shimura, M.: Defining equations of modular curves. Tokyo J. Math. 18, 443–456 (1995)MathSciNetCrossRefGoogle Scholar
  60. [Shok]
    Shokranian, S.: The Selberg-Arthur Trace Formula. Lecture Note Series, vol. 1503. Springer, Berlin (1992)zbMATHGoogle Scholar
  61. [SS]
    Shokranian, S., Shokrollahi, M.A.: Coding Theory and Bilinear Complexity. Scientific Series of the International Bureau, vol. 21. KFA Jülich (1994)zbMATHGoogle Scholar
  62. [Sh1]
    Shokrollahi, M.A.: Kapitel 9. In: Beitraege zur algebraischen Codierungs- und Komplexitaetstheorie mittels algebraischer Funkionenkoerper. Bayreuther mathematische Schriften, vol. 30, pp. 1–236 (1991)Google Scholar
  63. [St1]
    Stepanov, S.: Codes on Algebraic Curves. Kluwer, New York (1999)CrossRefGoogle Scholar
  64. [Sti]
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)zbMATHGoogle Scholar
  65. [TV]
    Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes, Mathematics and Its Applications. Kluwer Academic, Dordrecht (1991)CrossRefGoogle Scholar
  66. [TVN]
    Tsfasman, M.A., Vladut, S.G., Nogin, D.: Algebraic Geometric Codes: Basic Notions. Math. Surveys. AMS, Providence (2007)CrossRefGoogle Scholar
  67. [V]
    Velu, J.: Courbes elliptiques munies d’un sous-groupe ℤ/nℤ×μn. Bull. Soc. Math. France, Memoire (1978)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentUS Naval AcademyAnnapolisUSA
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA

Personalised recommendations