Hyperelliptic Curves and Quadratic Residue Codes

  • David JoynerEmail author
  • Jon-Lark Kim
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


For an odd prime p and a nonempty subset SGF(p), consider the hyperelliptic curve X S defined by
where f S (x)=∏aS(xa). Since the days of E. Artin in the early 1900s, mathematicians have searched for good estimates for the number of points on such curves. In the late 1940s and early 1950s, A. Weil developed good estimates when the genus is small relative to the size of the prime p. When the genus is large compared to p, good estimates are still unknown.

A long-standing problem has been to develop “good” binary linear codes to be used for error-correction. For example, is the Gilbert–Varshamov bound asymptotically exact in the case of binary codes?

This chapter is devoted to explaining a basic link between these two unsolved problems. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p), this chapter investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p, there exists a subset SGF(p) for which the bound |X S (GF(p))|>1.39p holds.


  1. [BM]
    Bazzi, L., Mitter, S.: Some constructions of codes from group actions. Preprint (2001). Appeared as Some randomized code constructions from group actions. IEEE Trans. Inf. Theory 52, 3210–3219 (2006). CrossRefGoogle Scholar
  2. [Cha]
    Chapman, R.: Preprint sent to J. Joyner (2008)Google Scholar
  3. [Char]
    Charters, P.: Generalizing binary quadratic residue codes to higher power residues over larger fields. Finite Fields Appl. 15, 404–413 (2009)MathSciNetCrossRefGoogle Scholar
  4. [D3]
    Duursma, I.: Extremal weight enumerators and ultraspherical polynomials. Discrete Math. 268(1–3), 103–127 (2003)MathSciNetCrossRefGoogle Scholar
  5. [Ga]
    Gaborit, P.: Quadratic double circulant codes over fields. J. Comb. Theory, Ser. A 97, 85–107 (2002)MathSciNetCrossRefGoogle Scholar
  6. [G2]
    Goppa, V.D.: Bounds for codes. Dokl. Akad. Nauk SSSR 333, 423 (1993)zbMATHGoogle Scholar
  7. [He]
    Helleseth, T.: Legendre sums and codes related to QR codes. Discrete Appl. Math. 35, 107–113 (1992)MathSciNetCrossRefGoogle Scholar
  8. [HV]
    Helleseth, T., Voloch, J.F.: Double circulant quadratic residue codes. IEEE Trans. Inf. Theory 50(9), 2154–2155 (2004)MathSciNetCrossRefGoogle Scholar
  9. [HP1]
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge Univ. Press, Cambridge (2003)CrossRefGoogle Scholar
  10. [JV]
    Jiang, T., Vardy, A.: Asymptotic improvement of the Gilbert–Varshamov bound on the size of binary codes. IEEE Trans. Inf. Theory 50, 1655–1664 (2004)MathSciNetCrossRefGoogle Scholar
  11. [Jo1]
    Joyner, D.: On quadratic residue codes and hyperelliptic curves. Discrete Math. Theor. Comput. Sci. 10(1), 129–126 (2008)MathSciNetzbMATHGoogle Scholar
  12. [LO]
    Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Fröhlich, A. (ed.) Algebraic Number Fields (L-functions and Galois theory), pp. 409–464. Academic Press, San Diego (1977)Google Scholar
  13. [MB]
    McEliece, R., Baumert, L.D.: Weights of irreducible cyclic codes. Inf. Control 20, 158–175 (1972)MathSciNetCrossRefGoogle Scholar
  14. [MR]
    McEliece, R., Rumsey, H.: Euler products, cyclotomy, and coding. J. Number Theory 4, 302–311 (1972)MathSciNetCrossRefGoogle Scholar
  15. [S]
    The SAGE Group: SAGE: Mathematical software, Version 4.6.
  16. [Sch]
    Schmidt, W.: Equations over Finite Fields: An Elementary Approach, 2nd edn. Kendrick Press (2004)zbMATHGoogle Scholar
  17. [Scf]
    Schoof, R.: Families of curves and weight distributions of codes. Bull. Am. Math. Soc. (NS) 32, 171–183 (1995). MathSciNetCrossRefGoogle Scholar
  18. [SvdV]
    Schoof, R., van der Vlugt, M.: Hecke operators and the weight distributions of certain codes. J. Comb. Theory, Ser. A 57, 163–186 (1991). MathSciNetCrossRefGoogle Scholar
  19. [Se1]
    Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Publ. Math. l’IHÉS 54, 123–201 (1981). Available: CrossRefGoogle Scholar
  20. [Sh2]
    Shokrollahi, M.A.: Stickelberger codes. Des. Codes Cryptogr. 9, 203–213 (1990)MathSciNetzbMATHGoogle Scholar
  21. [St2]
    Stepanov, S.: Character sums and coding theory. In: Proceedings of the Third International Conference on Finite Fields and Applications, Glasgow, Scotland, pp. 355–378. Cambridge University Press, Cambridge (1996)Google Scholar
  22. [T]
    Tarnanen, H.: An asymptotic lower bound for the character sums induced by the Legendre symbol. Bull. Lond. Math. Soc. 18, 140–146 (1986)MathSciNetCrossRefGoogle Scholar
  23. [TV]
    Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes, Mathematics and Its Applications. Kluwer Academic, Dordrecht (1991)CrossRefGoogle Scholar
  24. [VSV]
    van der Geer, G., Schoof, R., van der Vlugt, M.: Weight formulas for ternary Melas codes. Math. Comput. 58, 781–792 (1992)MathSciNetCrossRefGoogle Scholar
  25. [vdV]
    van der Vlugt, M.: Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes. J. Number Theory 55, 145–159 (1995)MathSciNetCrossRefGoogle Scholar
  26. [V1]
    Voloch, F.: Asymptotics of the minimal distance of quadratic residue codes. Preprint. Available:
  27. [V2]
    Voloch, F.: Email communications (5-2006)Google Scholar
  28. [Wa]
    Wage, N.: Character sums and Ramsey properties of generalized Paley graphs. Integers 6, A18 (2006). Available: MathSciNetzbMATHGoogle Scholar
  29. [W]
    Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. 34, 204–207 (1948)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentUS Naval AcademyAnnapolisUSA
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA

Personalised recommendations