Skip to main content

Adaptive Particle Filter for Stable Distribution

  • Chapter

Abstract

Particle filters are considered as the most robust method in the estimation theory. However, all techniques presented in the literature consider only cases where the data can be described by a probability distribution function (PDF) with all statistical moments well defined. The present chapter a novel particle filter is introduced for estimating a posteriori PDF using a Bayesian scheme. The key issue is to consider an adaptive likelihood function. The scheme generalizes the traditonal particle filter approaches. The scheme can be applied to inverse problem, control theory, image and signal processing, and data assimilation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jazwinski, A.H.: Stochastic Processes and Filtering Theory, Academic Press (1970).

    MATH  Google Scholar 

  2. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, Springer Verlag (2007).

    MATH  Google Scholar 

  3. Belyaev, K.P., Meyers, S., O’Brien, J.J.: Fokker–Planck equation application to data assimilation into hydrodynamic models. J. Math. Sci., 99, 1393 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. Belyaev, K.P., Tanajura, C.A.S., O’Brien, J.J.: A data assimilation method used with an ocean circulation model and its application to the tropical Atlantic. Appl. Math. Modelling, 25, 655 (2001)

    Article  MATH  Google Scholar 

  5. Tarantola, A.: Inverse Problem Theory, Elsevier (1987).

    MATH  Google Scholar 

  6. Jaipio, K., Somersalo, E.: Statistical and Computational Inverse Problems, Springer Verlag (2005).

    Google Scholar 

  7. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Statistical Physics, 52, 479 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. Tsallis, C.: Nonextensive statistics: theoretical, experimental and computational evidences and connections. Braz. J. Phys., 29, 1 (1999).

    Article  Google Scholar 

  9. Ramos, F.M., Rosa, R.R., Neto, C. Rodrigues, Bolzan, M.J.A., Sa, L.D.A., Campos Velho, H.F.: Nonextensive statistics and three-dimensional fully developed turbulence. Phys. A, 295, 250 (2001).

    Article  MATH  Google Scholar 

  10. Gordon, N., Salmond, D., Smith, A.D.: Novel approach to nonlinear/non-Gaussian Bayes ian state estimation. IEE Proc., 140, 107 (1993).

    Google Scholar 

  11. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE T. Signal Proces., 50, 174 (2002).

    Article  Google Scholar 

  12. Doucet, A.: On Sequential Simulation-Based Methods for Bayesian Filtering, Tech. Report: Departament of Engineering, University of Cambridge (CB21PZ Cambridge UK), 1998.

    Google Scholar 

  13. Nakano, S., Ueno, G., Higuchi, T.: Merging particle filter for sequential data assimilation. Nonlinear Proc. Geoph., 14, 395 (2007).

    Article  Google Scholar 

  14. Chorin, A.J., Krause, P.: Dimensional reduction for a Bayesian filter. Proc. of Nac. Acad. Sci., 101, 15013 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. Furtado, H.C.M., Campos, H.F., Macau, E.E.M.: Data assimilation: particle filter and artificial neural networks. Journal of Physics. Conference Series (Online), 135, 012073 (2008).

    Article  Google Scholar 

  16. Nolan, J.P.: Stable Distributions: Models for Heavy Tailed Data, Birkhäuser, Boston, MA (2005).

    Google Scholar 

  17. Schön, T.B., Gustafsson, F., Nordlund, P.-J.: Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE T. Signal Proces., 53, 2279 (2006).

    Article  Google Scholar 

  18. Schön, T.B.: Estimation of Nonlinear Dynamic Systems: Theory and Applications, Dissertations no. 998 (Linköping Studies in Sciense and Tecnology), 2006.

    Google Scholar 

  19. Bertero, M., Boccacci, P.: Inverse Problems in Imaging, Institute of Physics (1998).

    Book  MATH  Google Scholar 

  20. Papoulis, A.: Probability and Statistics, Pearson Higher Education (1989).

    Google Scholar 

  21. Tsallis, C., Queiros, S.M.D.: Nonextensive statistical mechanics and central limit theorems I – Convolution of independent random variables and q-product, in Complexity, Metastability and Nonextensivity (CTNEXT 07) (Editors: S. Abe, H. Herrmann, P. Quarati, A. Rapisarda, and C. Tsallis), American Institute of Physics (2007).

    Google Scholar 

  22. Leeuwen, P.J.V.: Particle filtering in geophysical systems. Monthly Weather Review, 137, 4089 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. de Campos Velho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Campos Velho, H.F., Morais Furtado, H.C. (2011). Adaptive Particle Filter for Stable Distribution. In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8238-5_6

Download citation

Publish with us

Policies and ethics