Skip to main content

Adaptive Irregular Sampling in Meshfree Flow Simulation

  • Chapter
Sampling, Wavelets, and Tomography

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 662 Accesses

Abstract

Meshfree discretizations for partial differential equations (PDEs) have recently gained much attention in many different applications from computational science and engineering, as well as in numerical analysis. These modern discretization methods rely essentially on customized adaptive techniques from irregular sampling. In this chapter, the utility of adaptive irregular sampling for flow simulation, in combination with a recent meshfree advection scheme, is illustrated. To this end, both passive advection and nonlinear advection-diffusion processes are included in our discussion. Two main ingredients of the meshfree advection scheme are the Lagrangian method of characteristics and local scattered data interpolation by polyharmonic splines. Both of these useful concepts are explained in this chapter. Finally, numerical examples show the good performance of the meshfree advection scheme, where particularly the utility of adaptive irregular sampling is demonstrated. To this end, we work with two selected test case scenarios from flow simulation: the slotted cylinder and Burgers’ equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuška and J. M. Melenk (1997), The partition of unity method.Int. J. Numer. Meths. Eng.40, 727–758.

    Article  MATH  Google Scholar 

  2. J. Behrens and A. Iske (2002), Grid-free adaptive semi-Lagrangian advection using radial basis functions.Comput. Math. Appl.43, 319–327.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Behrens, A. Iske, and S. Pöhn (2001), Effective node adaption for grid-free semi-Lagrangian advection.Discrete Modelling and Discrete Algorithms in Continuum Me-chanicsT. Sonar and I. Thomas (eds.), Logos Verlag, Berlin, 110–119.

    Google Scholar 

  4. J. Behrens, A. Iske, and M. Käser (2002), Adaptive meshfree method of backward characteristics for nonlinear transport equations.Meshfree Methods for Partial Differential EquationsM. Griebel and M. A. Schweitzer (eds.), Springer-Verlag, Heidelberg, 21–36.

    Google Scholar 

  5. M. D. Buhmann (2000), Radial basis functions.Acta Numerica1–38

    Google Scholar 

  6. J. M. Burgers (1940), Application of a model system to illustrate some points of the statistical theory of free turbulence.Proc. Acad. Sci. Amsterdam43, 2–12.

    MathSciNet  Google Scholar 

  7. J. C. Carr, W. R. Fright, and R. K. Beatson (1997), Surface interpolation with radial basis functions for medical imaging.IEEE Transactions Med. Imag.16, 96–107.

    Article  Google Scholar 

  8. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans (2001), Reconstruction and representation of 3D objects with radial basis functions.Computer Graphics (SIGGRAPH 2001 proceedings)67–76

    Google Scholar 

  9. E. W. Cheney and W. A. Light (2000)A Course in Approximation Theory.Brooks/Cole Publishing Company, Pacific Grove, CA.

    Google Scholar 

  10. R. Courant, E. Isaacson, and M. Rees (1952), On the solution of nonlinear hyperbolic differential equations by finite differences.Comm. Pure Appl. Math.5, 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Deuflhard and F. Bornemann (2002)Scientific Computing with Ordinary Differential Equations.Springer, New York.

    Book  MATH  Google Scholar 

  12. J. Duchon (1976), Interpolation des Fonctions de deux variables suivant le principe de la flexion des plaques mincesRA.I.R.O. Analyse Numeriques10, 5–12.

    MathSciNet  Google Scholar 

  13. J. Duchon (1977), Splines minimizing rotation-invariant semi-norms in Sobolev spaces.Constructive Theory of Functions of Several VariablesW. Schempp and K. Zeller (eds.), Springer, Berlin, 85–100.

    Chapter  Google Scholar 

  14. J. Duchon (1978), Sur l’erreur d’interpolation des fonctions de plusieurs variables par les Dm-splines.R.A.I.R.O. Analyse Numeriques12, 325–334.

    MathSciNet  MATH  Google Scholar 

  15. D. R. Durran (1999)Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.Springer, New York.

    Google Scholar 

  16. N. Dyn (1987), Interpolation of scattered data by radial functions.Topics in Multivariate ApproximationC. K. Chui, L. L. Schumaker, F. I. Utreras (eds.), Academic Press, New York, 47–61.

    Google Scholar 

  17. N. Dyn (1989), Interpolation and approximation by radial and related functions.Approximation Theory VI: Volume IC. K. Chui, L. L. Schumaker, and J. D. Ward (eds.), Academic Press, New York, 211–234.

    Google Scholar 

  18. M. Falcone and R. Ferretti (1998), Convergence analysis for a class of high-order semi-Lagrangian advection schemes.SIAM J. Numer. Anal. 35:3909–940

    Article  MathSciNet  MATH  Google Scholar 

  19. G. E. Fasshauer (1999), Solving differential equations with radial basis functions: multilevel methods and smoothingAdvances in Comp. Math. 11139–159

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Franke and R. Schaback (1998), Convergence orders of meshless collocation methods using radial basis functions.Advances in Comp. Math.8, 381–399.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Franke and R. Schaback (1998), Solving partial differential equations by collocation using radial basis functions.Appl. Math. Comp.93, 73–82.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Griebel and M. A. Schweitzer (2000), A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDEs.SIAM J. Sci. Comp.22, 853–890.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Griebel and M. A. Schweitzer (eds.) (2002)Meshfree Methods for Partial Differential EquationsSpringer-Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  24. B. Gustafsson, H.-O. Kreiss, and J. Oliger (1995)Time Dependent Problems and Difference Methods.John Wiley and Sons, New York.

    MATH  Google Scholar 

  25. T. Gutzmer and A. Iske (1997), Detection of discontinuities in scattered data approximation.Numer. Algorithms16, 155–170.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. J. Kansa (1990), Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-I: surface approximations and partial derivative estimates.Comput. Math. Appl. 19127–145

    Article  MathSciNet  MATH  Google Scholar 

  27. E. J. Kansa (1990), Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II: solution to parabolic, hyperbolic, and elliptic partial differential equations.Comput. Math. Appl. 19147–161.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Kybic, T. Blu, and M. Unser (2002), Generalized sampling: a variational approach-part I: theory.IEEE Transactions on Signal Processing50, 1965–1976.

    Article  MathSciNet  Google Scholar 

  29. J. Kybic, T. Blu, and M. Unser (2002), Generalized sampling: a variational approach-part II: applications.IEEE Transcactions on Signal Processing50, 1977–1985.

    Article  MathSciNet  Google Scholar 

  30. R. L. LeVeque (1992)Numerical Methods for Conservation Laws.Second edition, Birkhäuser, Basel.

    Book  MATH  Google Scholar 

  31. W. R. Madych and S. A. Nelson (1988), Multivariate interpolation and conditionally positive definite functions.Approx. Theory Appl.4, 77–89.

    MathSciNet  MATH  Google Scholar 

  32. W. R. Madych and S. A. Nelson (1990), Multivariate interpolation and conditionally positive definite functions IIMath. Comp .54, 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Meinguet (1979), Multivariate interpolation at arbitrary points made simple. Z.Angew. Math. Phys.30,292–304.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Meinguet (1979), An intrinsic approach to multivariate spline interpolation at arbitrary points.Polynomial and Spline ApproximationsN. B. Sahney (ed.), Reidel, Dordrecht, 163–190.

    Google Scholar 

  35. J. Meinguet (1984), Surface spline interpolation: basic theory and computational aspects.Approximation Theory and Spline FunctionsS. P. Singh, J. H. Bury, and B. Watson (eds.), Reidel, Dordrecht, 127–142.

    Chapter  Google Scholar 

  36. J. M. Melenk and I. Babuška (1996), The partition of unity finite element method: basic theory and applications.Comput. Meths. Appl. Mech. Engrg. 139289–314.

    Article  MATH  Google Scholar 

  37. C.A. Micchelli (1986), Interpolation of scattered data: distance matrices and conditionally positive definite functions.Constr. Approx.2, 11–22.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. J. Monaghan (1992), Smoothed particle hydrodynamics.Ann. Rev. Astron and Astro-physics30, 543–574.

    Article  Google Scholar 

  39. K. W. Morton (1996)Numerical Solution of Convection-Diffusion Problems.Chapman &Hall, London.

    MATH  Google Scholar 

  40. F. P. Preparata and M. I. Shamos (1988)Computational Geometry.Springer, New York.

    Google Scholar 

  41. A. Robert (1981), A stable numerical integration scheme for the primitive meteorological equations.Atmos. Ocean 1935–46.

    Article  Google Scholar 

  42. A. Robert (1982), A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations.J. Meteor. Soc. Japan60, 319–324.

    Google Scholar 

  43. R. Schaback (1995), Multivariate interpolation and approximation by translates of a basis function.Approximation Theory VIII, Vol. 1: Approximation and InterpolationC.K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 491–514

    Google Scholar 

  44. R. Schaback and H. Wendland (1999), Using compactly supported radial basis functions to solve partial differential equations.Boundary Element Technology XIIIC.S. Chen, C. A. Brebbia and D. W. Pepper (eds.), WitPress, Southampton, Boston, 311–324

    Google Scholar 

  45. A. Staniforth and J. Côté (1991), Semi-Lagrangian integration schemes for atmospheric models-a review.Mon. Wea. Rev. 1192206–2223.

    Article  Google Scholar 

  46. H. Wendland (1999), Meshless Galerkin methods using radial basis functions. Math. Com/7.68,1521–1531.

    Article  MathSciNet  MATH  Google Scholar 

  47. Z. Wu and R. Schaback (1993), Local error estimates for radial basis function interpolation of scattered data.IMA J. Numer. Anal. 1313–27

    Article  MathSciNet  MATH  Google Scholar 

  48. S. T. Zalesak (1979), Fully multidimensional flux-corrected transport algorithms for fluids.J. Comput. Phys31, 335–362

    Article  MathSciNet  MATH  Google Scholar 

  49. Special issue on meshless methodsComp. Meths. Appl. Mech. Engrg 1391996

    Google Scholar 

  50. Special issue on radial basis functions and partial differential equations, E. J. Kansa and Y.C. Hon (guest editors)Comput. Math. Appl.43, 2002.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iske, A. (2004). Adaptive Irregular Sampling in Meshfree Flow Simulation. In: Benedetto, J.J., Zayed, A.I. (eds) Sampling, Wavelets, and Tomography. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8212-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8212-5_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6495-8

  • Online ISBN: 978-0-8176-8212-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics