Skip to main content

Local zeta functions for a class of symmetric spaces

  • Chapter
Noncommutative Harmonic Analysis

Part of the book series: Progress in Mathematics ((PM,volume 220))

Abstract

This article is a report on a work which will be published elsewhere with complete proofs. It deals with some local zeta functions associated to a family of symmetric spaces arising from 3-gradings of reductive Lie algebras. Let \( \tilde{\mathfrak{g}} = {V^{ - }} \oplus \mathfrak{g} \oplus {V^{ + }} \) be a 3-graded real reductive Lie algebra. Let \( \tilde{G} \) be the adjoint group of \( \tilde{\mathfrak{g}} \) and let G be the analytic subgroup of \( \tilde{G} \) corresponding to the Lie algebra g. We make the assumption that the prehomogeneous vector space (G, V + ) is regular. In our context this means that there exists an irreducible polynomial △0 on V+ which is relatively invariant under the G-action. Let x0 be the corresponding character of G. Among the G-orbits in V+ there is the family Ω0 +1 +,…, Ω r + of open orbits which are symmetric spaces for G. This means that the isotropy subgroup H p of an element I p + ∈ Ω p + is a symmetric subgroup of G. Moreover the same symmetric spaces can be realized on the negative side. The space V - has the same number of open G-orbits denoted by Ω0 -, Ω1 -,…, Ω r - and for all p= 0,..., r one has G/ H p ≃Ω p + ≃ Ω p -. A striking fact in this framework is that all the symmetric spaces G/H p have the same minimal spherical principal series (πτ,λ, H τ,λ) where (τ,λ) is as usual an induction parameter. Let us denote as usual by H τ,λ -∞ the space of the distribution vectors and by (H τ,λ -∞) H p the subspace of H p -fixed vectors. Notice that for a p ∈(H τ,λ -∞) the function g ↦ πτ,λ(g)a p only depends on the class of g in G/Hp and therefore defines a function x ↦ πτ,λ(g)a p or a function y ↦πτ,λ(y)a p on Ω p - Let S(V + ) (resp. S (V -)) be the space of Schwartz functions on V + (resp. V-). Then for a = (a 0, a1,…, a r ) ∈Пr p= 0(H τ,λ -∞)H p , fS (V-) we define the following zeta functions:

$$ {Z^{ + }}(f,{\pi _{\tau }}_{{,\lambda }},a) = \sum\limits_{{p = 0}}^{r} {\int_{{\Omega _{p}^{ + }}} {f(x){\pi _{\tau }}_{{,\lambda }}(x)} {a_{p}}d*x,} $$
$$ {Z^{ - }}(h,{\pi _{\tau }}_{{,\lambda }},a) = \sum\limits_{{p = 0}}^{r} {\int_{{\Omega _{p}^{ - }}} {h(y){\pi _{\tau }}_{{,\lambda }}(y)} {a_{p}}d*y,} $$

where d * x (resp. d * y) is a G-invariant measure on Ω p + (resp.Ω p -). We prove that the integrals defining these zeta functions are convergent in a subdomain of the λ parameter, admit meromorphic continuation, and satisfy the following functional equation:

$${{Z}^{ - }}(\mathcal{F}f,{{\pi }_{{\tau ,\lambda }}},a) = {{Z}^{ + }}(f,\chi _{0}^{{ - m}} \otimes {{\pi }_{{\tau ,\lambda }}},{{A}^{{\tau ,\lambda }}}(a)),$$

where F: S(V +)→ S (V-)is the Fourier transform and A ∈ End(Пr p= 0 (H τ,λ -∞)H p ). Moreover we compute explicitly the matrix A in the standard basis of Пr p= 0(H τ,λ -∞)H p . The matrix A generalizes the local Tate “gamma” factor for ℝ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Angeli, Analyse harmonique sur les cônes satellites, Thèse, Universitè de Nancy, 2001.

    Google Scholar 

  2. E.P. van den Ban, The principal series for a reductive symmetric space I, H-fixed distribution vectors, Ann. Scient. Ec. Norm. Sup., 21 (1988), 359–412.

    MATH  Google Scholar 

  3. N. Bopp and H. Rubenthaler, Fonction zêta associée à la série principale sphérique de certains espaces symétriques, Ann. Scient. Ec. Norm. Sup.,26 (1993), 701–745.

    MathSciNet  MATH  Google Scholar 

  4. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.

    Google Scholar 

  5. J-L. Brylinski and P. Delorme, Vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrals d’Eisenstein, Invent. Math. 109 no. 3 (1992), 619–664.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bruhat, Sur les représentations induites des groups de Lie, Bull. Soc. Math. France 84 (1956), 97–105.

    MathSciNet  MATH  Google Scholar 

  7. J. Faraut and S. Gindikin, Pseudo-Hermitian Symmetric Spaces of Tube Type, in Topics in Geometry, Progress in Nonlinear Differential Equations, Vol. 20, Birkhäuser, Boston, 1996, pp. 123–154.

    Google Scholar 

  8. J. Faraut and A. Koranyi, Analysis on Symmetric Cones,Oxford Sciences Publ., 1994.

    Google Scholar 

  9. G. Fujisaki, On the zeta function of the simple algebra over the field of rational numbers, J. Fac. Sci. Univ: Tokyo. Sect. 17 (1958), 567–604.

    MathSciNet  Google Scholar 

  10. R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math. nO 260, Springer, Berlin, 1972.

    Google Scholar 

  11. S. Gelbart, Fourier Analysis on matrix space, Memoirs AMS, n o 108, 1971.

    Google Scholar 

  12. K.H. Helwig, Jordan-Algebren und symmetrische Raüme, Math. Z. 115 (1970), 315–349.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Jacquet and R.P. Langlands, Automorphic forms on GL (2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin, NewYork, 1970.

    Google Scholar 

  14. S. Kaneyuki, Sylvester’s law of inertia in simple graded Lie algebras, J. Math. Soc. Japan, 50, no 3 (1998), 593–614.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.B. Kayoya, Analyse sur les algèbres de Jordan réelles, Thèse, Paris VI, 1994.

    Google Scholar 

  16. H. Leptin, Die Funktional gleichung der zeta-Funktion einer einfachen Algebra, Abh. Math. Sem. Hamburg, Bd. 19 (1955), 198–220.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Muller, Décomposition orbitale des espaces préhomogènes réguliers de type parabolique commutative et application, C. R. Acad. Sc. Paris t. 303, no 11 (1986), 495–498.

    Google Scholar 

  18. I. Muller, Classification d’orbites pour une classe d’espaces préhomogènes, Nagoya Math. J. 151 (1998), 161–197.

    MathSciNet  MATH  Google Scholar 

  19. I. Muller, H. Rubenthaler and G. Schiffmann, Structure des espaces préhomogène sassociés à certaines algèbres de Lie graduées, Math. Ann. 274 (1986), 95–123.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.L. Onishchik and E.B. Vinberg, Lie Groups and Algebraic Groups,Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  21. G. Olafsson, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math. 90 (1987), 605–629.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Oshima and J. Sekiguchi, Eigenspaces of Invariant Differential Operators on an Affine Symmetric Space, Invent. Math. 57 (1980), 1–81.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Rallis and G. Schiffmann, Distributions in variants par le groupe orthogonal, in Analyse harmonique sur les Groupes de Lie,Lecture Notes in Math. nO 497, Springer, Berlin, 1975, pp. 494–642.

    Google Scholar 

  24. H. Rubenthaler, Espaces préhomogènes de type parabolique, Thèse d’Etat, Strasbourg, 1982.

    MATH  Google Scholar 

  25. H. Rubenthaler, Espaces préhomogènes de type parabolique, in Lectures on harmonic analysis on Lie groups and related topics, Lectures in Math. 14, Tokyo, 1982, pp.189–221.

    Google Scholar 

  26. H. Rubenthaler, Formes réelles des espaces préhomogènes irrèductibles de type parabolique, Ann. Inst. Fourier, Grenoble, 36 (1986), 11–38.

    Article  MathSciNet  Google Scholar 

  27. H. Rubenthaler, Algèbres de Lie et espaces préhomogènes, Travaux en cours, Hermann, Paris, 1992.

    Google Scholar 

  28. C. Sabbah, Proximité évanescente II, Compositio Math., 64 (1987), 213–241.

    MathSciNet  MATH  Google Scholar 

  29. M. Sato, Theory of prehomogeneous vector spaces; Notes by T. Shintani translated by M. Muro, Nagoya Math. J. 120 (1990), 1–34.

    MathSciNet  MATH  Google Scholar 

  30. M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. 100 (1974), 131–170.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces I: Functional equations, Tôhoku Math. J. 34 (1982), 437–483.

    Article  MATH  Google Scholar 

  32. H. Schlichtkrull, Harmonic Analysis on Semisimple Symmetric Spaces, in Harmonic Analysis and Special Functions on Symmetric Spaces (G. Heckmann and H. Schlichtkrull editors), Academic Press, London, 1994.

    Google Scholar 

  33. T. Shintani, On Dirichlet series whose coefficients are class numbers of integral binary forms, J. Math. Soc. Japan 24 (1972), 132–188.

    Article  MathSciNet  Google Scholar 

  34. E.M. Stein, Analysis in matrix spaces and some new representation of SL(n, ℂ), Ann. Math. 86 (1967), 461–490.

    Article  MATH  Google Scholar 

  35. J.T. Tate, Fourier analysis in number fields and Hecke’s zeta-functions, in Algebraic number theory (Cassels and Frõhlich editors), Academic Press, London, 1967, pp. 305–347.

    Google Scholar 

  36. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, Springer-Verlag, Berlin, 1972.

    Book  Google Scholar 

  37. A. Weil, Fonction Zêta et distributions, (1966), in Séminaire Bourbaki, Vol. 9, Exp. 312, p. 523–531, Soc. Math. France, Paris, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bopp, N., Rubenthaler, H. (2004). Local zeta functions for a class of symmetric spaces. In: Delorme, P., Vergne, M. (eds) Noncommutative Harmonic Analysis. Progress in Mathematics, vol 220. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8204-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8204-0_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6489-7

  • Online ISBN: 978-0-8176-8204-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics