Summation formulas, from Poisson and Voronoi to the present

  • Stephen D. Miller
  • Wilfried Schmid
Part of the Progress in Mathematics book series (PM, volume 220)


Summation formulas have played a very important role in analysis and number theory, dating back to the Poisson summation formula. The modern formulation of Poisson summation asserts the equality
$$\sum\limits_{{n \in \mathbb{Z}}} {f(n) = \sum\limits_{{n \in \mathbb{Z}}} {\widehat{f}(n)} } \left( {\widehat{f}(t) = \int_{\mathbb{R}} {f(x){{e}^{{ - 2\pi ixt}}}dx} } \right),$$
valid (at least) for all Schwartz functions f. Let us take a brief historical detour to the beginning of the 20th century, before the notion of Schwartz function had been introduced. The custom then was to state (1.1) for more general functions f,such as functions of bounded variation, but supported on a finite interval, and usually in terms of the cosine:
$$\mathop{{{{\sum }^{\prime }}}}\limits_{{a \leqslant n \leqslant b}} f(n) = \smallint _{a}^{b}f(x)dx + 2\mathop{\sum }\limits_{{n = 1}}^{\infty } \smallint _{a}^{b}f(x)\cos (2\pi nx)dx;$$
the notation ∑′ signifies that at points n where f has a discontinuity - including the endpoints a, b - the term f (n) is to be interpreted as the average of the left and right limits of f(x). Indeed, the general case of (1.2) can be reduced to the special case of a = 0, b = 1, which amounts to the statement that the Fourier series of a periodic function of bounded variation converges pointwise, to the average of its left and right-hand limits.


Modular Form Dirichlet Series Automorphic Form Summation Formula Automorphic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Canad. J. Math. 41 (1989), 385–438.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.B. Conrey and H. Iwaniec, Spacing of zeros of Hecke L-functions and the class number problem, Acta Arith. 103 (2002), 259–312.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Harold Davenport, Multiplicative Number Theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery.Google Scholar
  4. [4]
    Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. (4) 11 (1978), 471–542.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Stephen S. Gelbart and Stephen D. Miller, Riemann’s zeta function and beyond, to appear in Bulletin AMS. Google Scholar
  6. [6]
    I.S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 5th ed., Academic Press Inc., Boston, MA, 1994, Translation edited and with a preface by Alan Jeffrey.zbMATHGoogle Scholar
  7. [7]
    G.H. Hardy, On the expression of a number as the sum of two squares, Quarterly J. Math. (Oxford) 46 (1915), 263–283.zbMATHGoogle Scholar
  8. [8]
    G.H. Hardy and E Landau, The lattice points of a circle, Proc. Royal Soc. A 105 (1924), 244–258.zbMATHCrossRefGoogle Scholar
  9. [9]
    Dennis A. Hejhal and Barry N. Rackner, On the topography of Maass waveforms for PSL(2, Z), Experiment. Math. 1 (1992), 275–305. MR 95f:11037MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    M.N. Huxley, Exponential sums and lattice points. II, Proc. London Math. Soc (3) 66 (1993), 279–301, Corrigenda ibid 68, (1994), no. 2, p. 264.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    _, Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, vol. 13, The Clarendon Press Oxford University Press, New York, 1996, Oxford Science Publications.Google Scholar
  12. [12]
    _, The influence of G. Voronoi on analytic number theory, in [30].Google Scholar
  13. [13]
    Aleksandar Ivić, The Riemann Zeta-function, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.Google Scholar
  14. [14]
    Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on GL(3), Ann. of Math. (2) 109 (1979), 169–258.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), 123–191.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Edmund Landau, Über einen satz des Herrn Sierpiński, Giornale di Mathematiche di Battaglini 51 (1913), 73–81.Google Scholar
  17. [17]
    Edmund Landau, Über die Zerlegung der Zahlen in zwei Quadrate, Annali di Mathematica 20 (1913), 1–28.CrossRefGoogle Scholar
  18. [18]
    Stephen D. Miller, On the existence and temperedness of cusp forms for SL3 (ℤ), J. reine angew. Math. 533 (2001), 127–169.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Stephen D. Miller and Wilfried Schmid, Automorphic Distributions, L-functions, and Voronoi Summation for GL(3), preprint.Google Scholar
  20. [20]
    _, Distributions and Analytic Continuation of Dirichlet Series, preprint.Google Scholar
  21. [21]
    M. Ram Murty, Problems in Analytic Number Theory, Graduate Texts in Mathematics, vol. 206, Springer-Verlag, New York, 2001, Readings in Mathematics.Google Scholar
  22. [22]
    Bernard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Mon. Not. Berlin Akad. (Nov. 1859), 671–680.Google Scholar
  23. [23]
    Peter Sarnak, Arithmetic quantum chaos, The Schur Lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236.Google Scholar
  24. [24]
    Peter Sarnak and Thomas C. Watson, in preparation.Google Scholar
  25. [25]
    W. Sierpiński, O pewnym zagadnieniu z rachunku funkcyj asymptotycznych [On a problem in the theory of asymptotic functions], Prace Mat. Fiz. 17 (1906), 77–118, See also Sur un problème du calcul des fonctions asymptotiques, pp. 79–109, in Oeuvres Choisies, Tome I., S. Hartman and A. Schinzel, ed., PWN-Éditions Scientifiques de Pologne, Warszawa, 1974. (Polish)Google Scholar
  26. [26]
    Christopher D. Sogge, Concerning the L P norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988).Google Scholar
  27. [27]
    G. Voronoi, Sur un problème du calcul des fonctions asymptotiques, J. reine angew. Math 126 (1903), 241–282.zbMATHGoogle Scholar
  28. [28]
    G. Voronoi, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Annales Seientifiques de l’École Normale Supérieure 21 (1904), 203–267 and 459–533.Google Scholar
  29. [29]
    _, Sur le développment à l’aide des fonctions cylindriques, des sommes doubles ∑ f (pm 2+2qmn+2n 2), oú pm 2+2qmn +2n 2 est une forme positive à coefficients entiers, Verh. III Intern. Math. Kongr. in Heidelberg, Leipzig, 1905, pp. 241–245.Google Scholar
  30. [30]
    P. Engel and H. Syta (eds.), Voronoi’s Impact on Modern Science, Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine, 1998.Google Scholar
  31. [31]
    André Weil, On Eisenstein’s copy of the Disquisitiones, Algebraic Number Theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989.Google Scholar
  32. [32]
    _, Prehistory of the zeta-function, Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 1–9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen D. Miller
    • 1
  • Wilfried Schmid
    • 2
  1. 1.Department of MathematicsHill Center-Busch Campus Rutgers UniversityPiscatawayUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations