Intertwining ladder representations for SU(p, q) into Dolbeault cohomology

  • John D. Lorch
  • Lisa A. Mantini
  • Jodie D. Novak
Part of the Progress in Mathematics book series (PM, volume 220)


The positive spin ladder representations for G = SU(p, q)may be realized in a Fock space, in Dolbeault cohomology over G/S(U(p, q−1) × U(1)), and as certain holomorphic sections of a vector bundle over G/S(U(p) × U(q)). A Penrose transform, also referred to as a double fibration transform, intertwines the Dolbeault model into the vector bundle model. By passing through the Fock space realization of the ladder representations, we invert the Penrose transform, and thus intertwine the ladder representations into Dolbeault cohomology.

1991 Mathematics Subject Classification:

Primary 22E46, 22E70 Secondary 32L25, 32M15, 58G05, 81R05, 81R25 

Key words

Penrose transform ladder representations Dolbeault cohomology integral transform intertwining operator double fibration transform unitary representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure. Appl. Math. 14 (1961), 187–214.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [BE]
    R. Baston and M. Eastwood, The Penrose Transform, Clarendon Press, 1989.Google Scholar
  3. [BR]
    R. Blattner and J. Rawnsley, Quantization of the action of U(k,l) on R 2 (k+l), J. Funct, Anal. 50 (1983), 188–214.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [C]
    J. Carmona, Représentations du groupe de Heisenberg dans les espaces de (0, q)-formes, Math. Ann. 205 (1973), 89–112.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [D]
    M. Davidson, The harmonic representation of U(p, q) and its connection with the generalized unit disk, Pac. J. Math. 129 (1987), 33–55.zbMATHGoogle Scholar
  6. [DES]
    M. Davidson, T. Enright, and R. Stanke, Differential operators and highest weight representations, Mem. Amer. Math. Soc. 455 (1991), 1–117.MathSciNetGoogle Scholar
  7. [DS]
    M. Davidson and R. Stanke, Ladder representation norms for hermitian symmetric groups, J. Lie Theory 10 (2000), 157–170.MathSciNetzbMATHGoogle Scholar
  8. [FK]
    J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64–89.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [E]
    M. Eastwood, Some examples of the Penrose transform, RIMS Kokyuroku 1058 (1998), 22–28.MathSciNetzbMATHGoogle Scholar
  10. [EPW]
    M. Eastwood, R. Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1981), 305–351.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [F]
    V. Fock, Verallgemeinerung und Losung der Diracschen statistichen Gleichung, Z. Physik 49 (1928), 339–357.zbMATHCrossRefGoogle Scholar
  12. [H]
    L.K. Hua, Harmonic Analysis of Functions of Several Complex Variables, Amer. Math. Soc., Providence, RI, 1963.Google Scholar
  13. [KS]
    H. Jakobsen and M. Vergne, Wave and Dirac operators and representations of the conformal group, J. Funct. Anal. 24 (1977), 52–106.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [LA]
    M. Kashiwara and W. Schmid, Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, in Lie Theory and Geometry, Progr. Math. vol. 123, Birkhäuser, Boston, 1994, 457–488.Google Scholar
  15. [La]
    S. Lang, Algebra, Addison-Wesley, 1993.zbMATHGoogle Scholar
  16. [L1]
    J. Lorch, An orthogonal family of polynomials on the generalized unit disk and ladder representations of U(p, q), Proc. Amer. Math. Soc. 126 (1998), 3755–3761.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [L2]
    J. Lorch, An integral transform and ladder representations of U(p, q), Pac. J. Math. 186 (1998), 89–109.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [M]
    L. Mantini, An integral transform in L 2 -cohomology for the ladder representations of U(p, q), J. Funct. Anal. 60 (1985), 211–242.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [N]
    J. Novak, Explicit realizations of certain representations of Sp(n, R) via the double fibration transform, Pac. J. Math. 195 (2000), 417–451.zbMATHCrossRefGoogle Scholar
  20. [P]
    C. Patton, On representations in cohomology over pseudo-hermitian symmetric spaces, Bull. Amer. Math. Soc. 5 (1981), 63–66.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [PR]
    C. Patton and H. Rossi, Unitary structures on cohomology, Trans. Amer. Math. Soc. 290 (1985), 235–258.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [RSW]
    J. Rawnsley, W. Schmid, and J. Wolf, Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51 (1983), 1–114.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [S]
    W. Schmid, Die randwerte holomorpher funktionen auf hermischen räumen, Invent. Math. 9 (1969), 61–80.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [SW]
    S. Sternberg and J. Wolf, Hermitian Lie algebras and metaplectic representations, Trans. Amer. Math. Soc. 238 (1978), 1–43.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Z]
    R. Zierau, Representations in Dolbeault cohomology, in Representation Theory of Lie Groups, IAS/Park City Mathematics Series vol. 8, Amer. Math. Soc., Providence, RI, 2000, 91–146.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • John D. Lorch
    • 1
  • Lisa A. Mantini
    • 2
  • Jodie D. Novak
    • 3
  1. 1.Department of MathematicsBall State UniversityMuncieUSA
  2. 2.Department of MathematicsOklahoma State UniversityStillwaterUSA
  3. 3.Department of Mathematical SciencesUniversity of Northern ColoradoGreeleyUSA

Personalised recommendations