Skip to main content

Localization and Delocalization for Nonstationary Models

  • Conference paper
Book cover Multiscale Methods in Quantum Mechanics

Part of the book series: Trends in Mathematics ((TM))

Abstract

In recent years there has been considerable progress concerning mathematically rigorous results on the phenomenon of localization. We refer to the bibliography where we chose some classics, some recent articles as well as books on the subject. However, all these results provide only one part of the picture that is accepted since the groundbreaking work [4, 79] by Anderson, Mott and Twose: one expects a metal insulator transition. This effect is supposed to depend upon the dimension and the general picture is as follows: Once translated into the language of spectral theory there is a transition from a localized phase that exhibits pure point spectrum (= only bound states = no transp ort) to a delocalized phase with absolutely cont inuous spectrum (= scattering states = transport). What has been proven so far is the occurrence of the former phase, well known under the name of localization. The missing part, delocalization, has not been settled for genuine random models

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman and S.A. Molchanov, Localization at large disorder and at extreme energies: An elementary derivation Commun. Math. Phys. 157 (1993), 245–278.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Aizenman and G.M. Graf, Localization bounds for an electron gas J. Phys. A: Math. Gen. 31 (1998), 6783–6806.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Aizenman, A. Elgart, S. Naboko, J.H. Schenker, G. Stolz, Moment analysis for localization in random Schroedinger operators, eprint, arXiv, math-ph/0308023

    Google Scholar 

  4. P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109 (1958), 1492–1505.

    Article  Google Scholar 

  5. Bentosela, F., Briet, Ph., Pastur, L., On the spectral and wave propagation properties of the surface Maryland model. J. Math. Phys. 44:1 (2003), 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, M. Goldstein, On nonperturbative localization with quasiperiodic potential, Ann. of Math. 152 (2000), 835–879.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, On the spectrum of lattice Schrödinger operators with deterministic potential. II. Dedicated to the memory of Tom Wolff J. Anal. Math. 88 (2002), 221–254.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bourgain, M. Goldstein and W. Schlag, Anderson localization for Schrödinger operators on Z2with quasi-periodic potential Acta Math. 188:1 (2002), 41–86.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, New results on the spectrum of lattice Schrödinger operators and applications. In Mathematical results in quantum mechanics (Taxco, 2001) Contemp. Math., Vol. 307, Amer. Math. Soc., Providence, RI, 2002, 27–38.

    Google Scholar 

  10. J. Bourgain, On the spectrum of lattice Schrödinger operators with deterministic potential. Dedicated to the memory of Thomas H. Wolff J. Anal. Math. 87 (2002), 37–75.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bourgain, Exposants de Lyapounov pour opérateurs de Schrödinger discrètes quasi-périodiques. C. R. Math. Acad. Sci. Paris. 335:6 (2002), 529–531.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J. Statist. Phys. 108:5,6 (2002), 1203–1218.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bourgain and S. Jitomirskaya, Absolutely continuous spectrum for 1D quasi-periodic operators. Invent. Math. 148:3 (2002), 453–463.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Bourgain, On random Schrödinger operators on ℤ2. Discrete Contin. Dyn. Syst. 8:1 (2002), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bourgain, M. Goldstein and W. Schlag, Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Comm. Math. Phys. 220:3 (2001), 583–621.

    Article  MathSciNet  Google Scholar 

  16. A. Boutet de Monvel, P. Stollmann, Dynamical localization for continuum random surface models Arch. Math. 80 (2003), 87–97.

    Article  MATH  Google Scholar 

  17. A. Boutet de Monvel, P. Stollmann and G. Stolz, Absence of continuous spectral types for certain nonstationary random models. Preprint, 2004.

    Google Scholar 

  18. A. Boutet de Monvel, A. Surkova, Localisation des états de surface pour une classe d’opérateurs de Schrödinger discrets à potentiels de surface quasi-périodiques Helv. Phys. Acta 71:5 (1998), 459–490.

    MathSciNet  MATH  Google Scholar 

  19. R. Carmona and J. Lacroix Spectral Theory of Random Schrödinger Operators Birkhäuser, Boston, 1990.

    Book  MATH  Google Scholar 

  20. R. Carmona and A. Klein and F. Martinelli, Anderson localization for Bernoulli and other singular potentials Commun. Math. Phys. 108 (1987), 41–66.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Chahrour and J. Sahbani, On the spectral and scattering theory of the Schrödinger operator with surface potential, Rev. Math. Phys. 12:4 (2000), 561–573.

    MathSciNet  MATH  Google Scholar 

  22. J.M. Combes and P.D. Hislop, Localization for some continuous, random Hamiltonians in d-dimensions J. Funct. Anal. 124 (1994), 149–180.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.M. Combes, and P.D. Hislop, Landau Hamiltonians with random potentials: Localization and density of states Commun. Math. Phys. 177 (1996), 603–630.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Damanik and P. Stollmann, Multi-scale analysis implies strong dynamical localization. GAFA, Geom. Funct. Anal. 11 (2001), 11–29.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. del Rio, S. Jitomirskaya, Y. Last and B. Simon, What is localization? Phys. Rev. Letters 75 (1995), 117–119.

    Article  Google Scholar 

  26. R. del Rio, S. Jitomirskaya, Y. Last and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization J. d’Analyse Math. 69 (1996), 153–200.

    Article  MATH  Google Scholar 

  27. F. Delyon, Y. Levy and B. Souillard, Anderson localization for multidimensional systems at large disorder or low energy Commun. Math. Phys. 100 (1985), 463–470.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Delyon, Y. Levy and B. Souillard, Approach à la Borland to multidimensional localisation Phys. Rev. Lett. 55 (1985), 618–621.

    Article  Google Scholar 

  29. T.C. Dorlas, N. Macris and J.V. Pulé, Localization in a single-band approximation to random Schrödinger operators in a magnetic field Helv. Phys. Acta 68 (1995), 329–364.

    MathSciNet  MATH  Google Scholar 

  30. H. von Dreifus, On the effects of randomness in ferromagnetic models and Schrödinger operators. NYU, Ph.D. Thesis (1987).

    Google Scholar 

  31. H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model Commun. Math. Phys. 124 (1989), 285–299.

    Article  MATH  Google Scholar 

  32. W.G. Faris, Random waves and localization. Notices Amer. Math. Soc. 42 :8 (1995), 848–853.

    MathSciNet  MATH  Google Scholar 

  33. A. Figotin and A. Klein, Localization of classical waves I: Acoustic waves Commun. Math. Phys. 180 (1996), 439–482.

    Article  MathSciNet  Google Scholar 

  34. W. Fischer, H. Leschke and P. Müller, Spectral localization by Gaussian random potentials in multi-dimensional continuous space,J. Stat. Phys. 101 (2000), 935–985.

    Article  MATH  Google Scholar 

  35. J. Fröhlich, Les Houches lecture, in Critical Phenomena, Random Systems, Gauge Theories K. Osterwalder and R. Stora, eds. North-Holland, 1984.

    Google Scholar 

  36. J. Fröhlich, F. Martinelli, E. Scoppola and T. Spencer, Constructive Proof of Localization in the Anderson Tight Binding Model Commun. Math. Phys. 101 (1985), 21–46.

    Article  MATH  Google Scholar 

  37. J. Fröhlich and T. Spencer, Absence of Diffusion in the Anderson Tight Binding Model for Large Disorder or Low Energy Commun. Math. Phys. 88 (1983), 151–184.

    Article  MATH  Google Scholar 

  38. F. Germinet, Dynamical Localization II with an Application to the Almost Mathieu Operator. J. Statist. Phys. 98 :5,6 (2000), 1135–1148.

    MathSciNet  MATH  Google Scholar 

  39. F. Germinet and S. de Bievre, Dynamical Localization for Discrete and Continuous Random Schrödinger operators Commun. Math. Phys. 194 (1998), 323–341.

    Article  MATH  Google Scholar 

  40. F. Germinet and S. Jitomirskaya, Strong dynamical localization for the almost Mathieu model. Rev. Math. Phys. 13 :6 (2001), 755–765.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Germinet and A. Klein, Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys. 222 :2 (2001), 415–448.

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Germinet and H. Klein, A characterization of the Anderson metal-insulator transport transition; submitted.

    Google Scholar 

  43. I. Ya. Goldsheidt, S.A. Molchanov and L. A. Pastur, Typical one-dimensional Schrödinger operator has pure point spectrum Funktsional. Anal. i Prilozhen. 11 :1 (1977), 1–10; Engl. transl. in Functional Anal. Appl. 11 (1977).

    Article  Google Scholar 

  44. M. Goldstein, W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math. (2) 154 :1 (2001), 155–203.

    Article  MathSciNet  MATH  Google Scholar 

  45. G.M. Graf, Anderson localization and the space-time characteristic of continuum states J. Stat. Phys. 75 (1994), 337–343.

    Article  MathSciNet  MATH  Google Scholar 

  46. V. Grinshpun, Localization for random potentials supported on a subspace Lett. Math. Phys. 34 :2 (1995), 103–117.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Holden and F. Martinelli, On the absence of diffusion for a Schrödinger operator on L2(RV) with a random potential Commun. Math. Phys. 93 (1984), 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Hundertmark, On the time-dependent approach to Anderson localization Math. Nachrichten 214 (2000), 25–38.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Hundertmark, W. Kirsch, Spectral theory of sparse potentials, in Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999) Amer. Math. Soc., Providence, RI, 2000, 213–238.

    Google Scholar 

  50. V. Jaksié, Y. Last, Corrugated surfaces and a.c. spectrum, Rev. Math. Phys. 12(11) (2000), 1465–1503.

    MathSciNet  Google Scholar 

  51. V. Jaksic, Y. Last, Spectral structure of Anderson type hamiltonians, Inv. Math. 141:3 (2000), 561–577

    MathSciNet  Google Scholar 

  52. I. McGillivray, P. Stollmann and G. Stolz, Absence of absolutely continuous spectra for multidimensional Schrödinger operators with high barriers, Bull. London Math. Soc. 27 :2 (1995), 162–168.

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Jaksic, S. Molchanov: On the surface spectrum in dimension two Heiv. Phys. Acta 71 :6 (1998), 629–657.

    MathSciNet  MATH  Google Scholar 

  54. V. Jaksié, S. Molchanov, On the spectrum of the surface Maryland model Lett. Math. Phys. 45 :3 (1998), 189–193.

    MathSciNet  Google Scholar 

  55. V. Jaksic, S. Molchanov, Localization of surface spectra Comm. Math. Phys. 208 :1 (1999), 153–172.

    Article  MathSciNet  MATH  Google Scholar 

  56. V. Jaksié, S. Molchanov, L. Pastur, On the propagation properties of surface waves, in Wave Propagation in Complex Media (Minneapolis, MN, 199.4) IMA Math. Appl., Vol. 96, Springer, New York, 1998, 143–154.

    Google Scholar 

  57. S. Jitomirskaya, Almost everything about the almost Mathieu operator II. In: Proc. of the XIth International Congress of Mathematical Physics Paris 1994, Int. Press, 1995, 366–372.

    Google Scholar 

  58. S. Jitomirskaya and Y. Last, Anderson localization for the almost Mathieu operator III. Semi-uniform localization, continuity of gaps and measure of the spectrum Commun. Math. Phys. 195 (1998), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Jitomirskaya, Metal-Insulator transition for the Almost Mathieu operator Annals of Math. 150 (1999), 1159–1175.

    Article  MathSciNet  MATH  Google Scholar 

  60. S. John, The localization of light and other classical waves in disordered media Comm. Cond. Mat. Phys.14 :4 (1988), 193–230

    Google Scholar 

  61. A. Klein: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133 :1 (1998), 163–184.

    Article  MathSciNet  MATH  Google Scholar 

  62. W. Kirsch, Wegner estimates and Anderson localization for alloy-type potentials Math. Z. 221 (1996), 507–512.

    MathSciNet  MATH  Google Scholar 

  63. W. Kirsch, Scattering theory for sparse random potentials. Random Oper. Stochastic Equations 10 :4 (2002), 329–334.

    MathSciNet  MATH  Google Scholar 

  64. W. Kirsch, M. Krishna and J. Obermeit, Anderson model with decaying randomness: Mobility edge Math. Z. 235 (2000), 421–433.

    Article  MathSciNet  MATH  Google Scholar 

  65. W. Kirsch, P. Stollmann, G Stolz: Localization for random perturbations of periodic Schrödinger operators Random Oper. Stochastic Equations 6 :3 (1998), 241–268.

    Article  MathSciNet  MATH  Google Scholar 

  66. W. Kirsch, P. Stollmann, G Stolz: Anderson localization for random Schrödinger operators with long range Interactions Comm. Math. Phys. 195 :3 (1998), 495–507.

    Article  MathSciNet  MATH  Google Scholar 

  67. F. Kleespies and P. Stollmann, Localization and Lifshitz tails for random quantum waveguides Rev. Math. Phys. 12 :10 (2000), 1345–1365.

    Article  MathSciNet  MATH  Google Scholar 

  68. F. Klopp, Localization for semiclassical Schrödinger operators II: The random displacement model Heiv. Phys. Acta 66 (1993), 810–841.

    MathSciNet  MATH  Google Scholar 

  69. F. Klopp, Localization for some continuous random Schrödinger operators Commun. Math. Phys. 167 (1995), 553–569.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Krishna: Anderson model with decaying randomness: Existence of extended states Proc. Indian Acad. Sci. Math. Sci. 100 :3285–294.

    MathSciNet  Google Scholar 

  71. M. Krishna: Absolutely continuous spectrum for sparse potentials Proc. Indian Acad. Sci. Math. Sci. 103 :3 (1993), 333–339.

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Krishna, K.B. Sinha, Spectra of Anderson type models with decaying randomness. Proc. Indian Acad. Sci. Math. Sci. 111 :2 (2001), 179–201.

    MathSciNet  Google Scholar 

  73. Y. Last, Almost everything about the almost Mathieu operator I, in Proc. of the XIth International Congress of Mathematical Physics Paris 1994, Int. Press, 1995, 373–382.

    Google Scholar 

  74. F. Martinelli and H. Holden, On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on L2ν Commun. Math. Phys. 93 (1984), 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  75. F. Martinelli and E. Scoppola, Introduction to the mathematical theory of Anderson localization Rivista Nuovo Cimento 10 (1987), 10.

    Article  MathSciNet  Google Scholar 

  76. F. Martinelli and E. Scoppola, Remark on the absence of the absolutely continuous spectrum for d-dimensional Schrödinger operator with random potential for large disorder or low energy Commun. Math. Phys. 97 (1985), 465–471; Erratum ibid. 98 (1985), 579.

    Article  MathSciNet  MATH  Google Scholar 

  77. S. Molchanov, Multiscattering on sparse bumps, in Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997) Contemp. Math., Vol. 217, Amer. Math. Soc., Providence, RI, 1998,157–181.

    Google Scholar 

  78. S. Molchanov, B. Vainberg, Multiscattering by sparse scatterers, in Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000) SIAM, Philadelphia, PA, 2000, 518–522.

    Google Scholar 

  79. N.F. Mott and W.D. Twose, The theory of impurity conduction, Adv. Phys. 10 (1961), 107–163.

    Google Scholar 

  80. L.A. Pastur and A. Figotin Spectra of Random and Almost-Periodic Operators Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  81. D. Pearson, Singular continuous measures in scattering theory Commun. Math. Phys. 60 (1976), 13–36.

    Article  Google Scholar 

  82. W. Schlag, C. Shubin, T. Wolff, Frequency concentration and location lengths for the Anderson model at small disorders. Dedicated to the memory of Tom Wolff J. Anal. Math. 88 (2002), 173–220.

    Article  MathSciNet  MATH  Google Scholar 

  83. C. Shubin, R. Vakilian and T. Wolff, Some harmonic analysis questions suggested by Anderson—Bernoulli models GAFA 8 (1998), 932–964.

    Article  MathSciNet  MATH  Google Scholar 

  84. B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians Comm. Pure Appl. Math. 39 (1986), 75–90.

    Article  MathSciNet  MATH  Google Scholar 

  85. R. Sims and G. Stolz, Localization in one dimensional random media: a scattering theoretic approach Comm. Math. Phys. 213 (2000), 575–597.

    Article  MathSciNet  MATH  Google Scholar 

  86. T. Spencer, The Schrödinger equation with a random potential — A mathematical review, in Critical Phenomena, Random Systems, Gauge Theories K. Osterwalder and R. Stora, eds. North Holland, 1984.

    Google Scholar 

  87. T. Spencer, Localization for random and quasi-periodic potentials J. Stat. Phys. 51 (1988), 1009.

    Article  MATH  Google Scholar 

  88. P. Stollmann Caught by Disorder — Bound States in Random Media Progress in Math. Phys., Vol. 20, Birkhäuser, Boston, 2001.

    Book  MATH  Google Scholar 

  89. P. Stollmann, Wegner estimates and localization for continuum Anderson models with some singular distributions Arch. Math. 75:4 (2000), 307–311.

    Article  MathSciNet  MATH  Google Scholar 

  90. P. Stollmann and G. Stolz, Singular spectrum for multidimensional operators with potential barriers. J. Operator Theory 32 (1994), 91–109.

    MathSciNet  MATH  Google Scholar 

  91. G. Stolz, Localization for Schrödinger operators with effective barriers. J. Funct. Anal. 146:2 (1997), 416–429.

    Article  MathSciNet  MATH  Google Scholar 

  92. G. Stolz, Localization for random Schrödinger operators with Poisson potential Ann. Inst. Henri Poincaré 63 297–314 (1995).

    MathSciNet  MATH  Google Scholar 

  93. D.J. Thouless, Introduction to disordered systems. Phènoménes Critiques, Systèmes Aléatoires, Théories de Jauge, Part I, II (Les Houches, 1984) North-Holland, Amsterdam, 1986, 681–722.

    Google Scholar 

  94. I. Veselic, Localisation for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues. Ann. Henri Poincare 3:2 (2002), 389–409.

    Article  MathSciNet  MATH  Google Scholar 

  95. W.M. Wang, Microlocalization, percolation, and Anderson localization for the magnetic Schrödinger operator with a random potential J. Funct. Anal. 146 (1997), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  96. H. Zenk, Anderson localization for a multidimensional model including long range potentials and displacements. Rev. Math. Phys. 14:2 (2002), 273–302.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Stollmann, P. (2004). Localization and Delocalization for Nonstationary Models. In: Blanchard, P., Dell’Antonio, G. (eds) Multiscale Methods in Quantum Mechanics. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8202-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8202-6_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6488-0

  • Online ISBN: 978-0-8176-8202-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics