Skip to main content

Remarks on Time-dependent Schrödinger Equations, Bound States, and Coherent States

  • Conference paper
Multiscale Methods in Quantum Mechanics

Part of the book series: Trends in Mathematics ((TM))

Summary

It has been well known from the beginning of quantum theory that there exist deep connections between the time evolution of a classical Hamiltonian system and the bound states for the Schrödinger equation, in particular in the semiclassical régime. These connections are well understood for integrable systems (Bohr—Sommerfeld quantization rules). But for more intricate systems (like classically chaotic Hamiltonian) the mathematical analysis of the bound states is much more difficult and there are few rigorous mathematical results. In this paper our goal is to revisit some of these results and to show that they can be proven, and sometimes improved, by using essentially two technics: the Wigner—Weyl calculus and the propagation of observables on one side, the propagation of coherent states on the other side. We want to emphasize that in our approach we get rather explicit estimates in terms of classical dynamics

The main ideas explained here, in particular the use of coherent states, are the results of several year of collaboration with Monique Combescure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bouzouina A.,Robert D., Uniform semiclassical estimates for the propagation of observables, Duke Mathematical Journal. 111:2(2002), 223–252.

    Article  MathSciNet  MATH  Google Scholar 

  2. Brummelhuis R., Uribe A., A semiclassical trace formula for Schrödinger operators, Comm.Math. Phys. 136 (1991), 567–584.

    Article  MathSciNet  MATH  Google Scholar 

  3. Combescure M., Robert D., Ralston J., A proof of the Gutzwiller Semiclassical Formula Using Coherent States Decomposition, Commun. Math. Phys. 202 (1999), 463–480.

    Article  MathSciNet  MATH  Google Scholar 

  4. Combescure M., Robert D., Distribution of matrix elements and level spacings for classically chaotic systems, Ann. Inst. Henri Poincaré 61:4 (1994), 443–483.

    MathSciNet  MATH  Google Scholar 

  5. Combescure M., Robert D., Semiclassical sum rules and generalized coherent states, J. M. P. 36:12 (December 1995).

    MathSciNet  Google Scholar 

  6. Combescure M., Robert D., Semiclassical spreading of quantum wave packet and applications near unstable fixed points of the classical flow, Asymptotic Analysis 14 (1997), 377–404.

    MathSciNet  MATH  Google Scholar 

  7. Combescure M., Robert D., Rigorous semiclassical results for the magnetic response of an electron gas, Reviews in Math. Phys. 13:9 (2001), 1055–1073.

    Article  MathSciNet  MATH  Google Scholar 

  8. Combescure M., Robert D., Semiclassical results in the linear response theory, Annals of Physics 305 (2003), 45–59.

    Article  MathSciNet  MATH  Google Scholar 

  9. De Bièvre S., Robert D., Semiclassical propagation and the log he-1 time-barier, I. M. R. N. 12 (2003), 667–696.

    Google Scholar 

  10. Dozias S., thesis, DMI. ENS., Paris, 1994.

    Google Scholar 

  11. Duistermaat J.J., Guillemin V, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math. 29 (1975), 39–79.

    Article  MathSciNet  MATH  Google Scholar 

  12. Folland G.B., Harmonic Analysis in Phase Space, Annals of Math. Studies, Vol. 122, Princeton University Press, 1989.

    Google Scholar 

  13. Gutzwiller M., Periodic orbits and classical quantization conditions, J.Math. Phys. 12:3 (1971), 343–358.

    Article  Google Scholar 

  14. Hagedorn G., Semiclassical quantum mechanics, Ann. Phys. 135 (1981), 58–70; Ann. Inst. Henri Poincaré 42 (1985), 363–374.

    MathSciNet  Google Scholar 

  15. Helfer B., Martinez A., Robert D., Ergodicité et limite semi-classique, CMP 109 (1987), 313–326.

    Google Scholar 

  16. Hörmander L, The spectral function of an elliptic operator, Acta. Math. 121 (1968), 193–218.

    MATH  Google Scholar 

  17. Hörmander L. The Analysis of Linear Partial Differential Operators, Vols. I-IV, Springer-Verlag, 1983–85.

    Book  Google Scholar 

  18. Ivrii V., Microlocal Analysis and Precise Spectral Asymptotics, Springer, 1998.

    Book  Google Scholar 

  19. Littlejohn R.G., The semiclassical evolution of wave packets, Physics Report 138:45 (1986), 193–291.

    Article  MathSciNet  Google Scholar 

  20. Paul T., Semi-classical methods with emphasis on coherent states, in IMA Volumes in Mathematics and Applications , J. Rauch and B. Simon, eds., Vol. 95, Springer, 1997, 51–97.

    Google Scholar 

  21. Paul T., Uribe A., Sur la formule semi-classique des traces, Note CRAS 313:I (1991), 217–222.

    Google Scholar 

  22. Petkov V., Popov G., Semiclassical trace formula and clustering of eigenvalues for Schrödinger operators, Ann. I.H.P., Sect. Phys. Th 68 (1998), 17–83.

    MathSciNet  MATH  Google Scholar 

  23. Petkov V., Robert D., Asymptotique semi-classique du spectre d’hamiltoniens quantiques et trajectoires classiques périodiques, Comm. in PDE 10:4 (1985), 365–390.

    Article  MathSciNet  MATH  Google Scholar 

  24. Robert D., Autour de l’Approximation Semi-classique, Birkhäuser, Prog. Math., Vol. 68., 1987.

    Google Scholar 

  25. Robert D., Remarks on asymptotic solutions for time dependent Schrödinger equations. in Optimal control and partial differential equations, IOS Press, 188–197, (2001).

    Google Scholar 

  26. Sunada T., Quantum ergodicity, in Progress in Inverse Spectral Geometry, Andersson, Stig I. et al., eds., Birkhäuser, Basel Trends in Mathematics (1997), 175–196.

    Google Scholar 

  27. Volovoy A., Improved two-terms asymptotics for the eigenvalue distribution of an elliptic operator on a compact manifold, Comm. in P.D.E. 15:11 (1990), 1509–1563.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wilkinson M., A semi-classical sum rule for matrix elements of classically chaotic systems, J. Phys. A: Math. Gen. 20 (1987), 2415–2423.

    Article  MathSciNet  Google Scholar 

  29. Zelditch S., Quantum mixing, JFA 140 (1996), 68–86; and Quantum Dynamics from the Semi-classical Point of View , unpublished lectures, Institut Borel, II1P, Paris, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Robert, D. (2004). Remarks on Time-dependent Schrödinger Equations, Bound States, and Coherent States. In: Blanchard, P., Dell’Antonio, G. (eds) Multiscale Methods in Quantum Mechanics. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8202-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8202-6_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6488-0

  • Online ISBN: 978-0-8176-8202-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics