Skip to main content

Infinite-Dimensional Groups and Their Representations

  • Chapter
Book cover Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 228))

Summary

This article provides an introduction to the representation theory of Banach-Lie groups of operators on Hilbert spaces, where our main focus lies on highest weight representations and their geometric realization as spaces of holomorphic sections of a complex line bundle. After discussing the finite-dimensional case in Section I, we describe the algebraic side of the theory in Sections II and III. Then we turn in Sections IV and V to Banach-Lie groups and holomorphic representations of complex classical groups. The geometry of the coadjoint action is discussed in Section VI, and in the concluding Section VII all threads lead to a full discussion of the theory for the group U 2(H) of unitary operators u on a Hilbert space H for which u1 is Hilbert-Schmidt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiyah, M., K-Theory, Benjamin, Amsterdam, 1969.

    Google Scholar 

  2. Birkhoff, G., Analytic Groups, Transactions of the American Math. Soc. 43 (1938), 61–101.

    Article  MathSciNet  Google Scholar 

  3. Bourbaki, N., Groupes et algébres de Lie, Chapitres 1-9, Masson, Paris, 1990.

    Google Scholar 

  4. Borel, A., Linear Algebraic Groups, Graduate Texts in Math. 126, Springer-Verlag, New York, Berlin, 1991.

    Google Scholar 

  5. Boyer, R., Representations of the Hilbert Lie group U (H) 2, Duke Math. J. 47 (1980), 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  6. Carey, A. and J. Palmer, Infinite complex spin groups, J. Funct. Anal. 83:1 (1989), 1–43.

    Article  MathSciNet  Google Scholar 

  7. Carey, A. and S. N. M. Ruijsenaars, On fermion gauge groups, current algebras, and Kac-Moody algebras, Acta Appl. Math. 10 (1987), 1–86.

    Article  MathSciNet  MATH  Google Scholar 

  8. Carter, R., G. Segal and I. MacDonald, Lectures on Lie Groups and Lie Algebras, London Math. Soc, Student Texts 32,1995.

    Book  MATH  Google Scholar 

  9. Cuenca Mira, J. A., A. García Martín, and C. Martín Gonzales, Structure theory for L*-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 361–365.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorfmeister, J. and K. Nakajima, The fundamental conjecture for homogeneous Kahler manifolds, Acta. Math. 161 (1988), 23–70.

    Article  MathSciNet  MATH  Google Scholar 

  11. van Est, W. T., and Th. J. Korthagen, Non-enlargeable Lie algebras, Proc. Kon. Ned. Acad. v. Wet. A 67 (1964), 15–31.

    MATH  Google Scholar 

  12. Gohberg, I., S. Goldberg and N. Kupnick, Traces and Determinants of Linear Operators, Operator Theory, Advances and Applications 116, Birkhäuser Verlag, Basel, 2000.

    Google Scholar 

  13. Goodman, R. and N. R. Wallach, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. reine ang. Math. 347(1984), 69–133.

    MathSciNet  MATH  Google Scholar 

  14. Goodman, R. and N. R. Wallach —, Projective unitary positive energy representations of Diff(S1), J. Funct. Anal. 63(1985), 299–312.

    Article  MathSciNet  MATH  Google Scholar 

  15. Griffiths, P. and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978.

    MATH  Google Scholar 

  16. Guillemin, V. and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.

    MATH  Google Scholar 

  17. Gunning, R.C., and H. Rossi, Analytic Funtions of Several Complex Variables, Prentice-Hall Inc., Englewood Cliffs, N.J., 1965.

    Google Scholar 

  18. de la Harpe, P., Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  19. Helminck, A. G. and Helminck, G. F., Holomorphic line bundles over Hilbert flag varieties, in Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, W. J. Haboush ed., Proc. Symp. Pure Math. 56:2 (1994), 349–375.

    Google Scholar 

  20. Helminck, A. G. and Helminck, G. F., —, The structure of Hilbert flag varieties, Publ. Res. Inst. Math. Sci. 30:3 (1994), 401–441.

    Article  MathSciNet  Google Scholar 

  21. Hirzebruch, F. and W. Scharlau, Einführung in die Funktionalanalysis, BI Hochschultaschenbücher, 1985.

    Google Scholar 

  22. Hofmann, K. H. and S.A. Morris, The Structure of Compact Groups, Studies in Math., de Gruyter, Berlin, 1998.

    MATH  Google Scholar 

  23. Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972.

    Google Scholar 

  24. Humphreys, J. E. —, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics 29, Cambridge University Press, 1992.

    Google Scholar 

  25. Husemoller, D., Fibre Bundles, Graduate Texts in Math., Springer-Verlag, New York, 1994.

    Google Scholar 

  26. Kac, V. G. and A. K. Raina, Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Math. Physics, World Scientific, Singapore, 1987.

    MATH  Google Scholar 

  27. Kirillov, A. A., Representation of the infinite dimensional unitary group, Dokl. Akad. Nauk. SSSR 212 (1973), 288–290.

    MathSciNet  Google Scholar 

  28. Kirillov, A. A. —, Elements of the Theory of Representations, Grundlehren der math. Wissenschaften 220, Springer-Verlag, Berlin, Heidelberg, 1976.

    Google Scholar 

  29. Knapp, A. W. and D. Vogan, Cohomological Induction and Unitary Representations, Princeton University Press, 1995.

    Google Scholar 

  30. Kostant, B. Quantization and Unitary Representations, in Modern Analysis and Appl.3, Lecture Notes in Math., 170, Springer-Verlag, 1970, 87–208.

    MathSciNet  Google Scholar 

  31. Lang, S., Fundamentals of Differential Geometry, Graduate Texts in Math. 191, Springer-Verlag, 1999.

    Google Scholar 

  32. Laredo, V. T., Integration of unitary representations of infinite dimensional Lie groups, J. Funct. Anal. 161:2 (1999), 478–508.

    Article  Google Scholar 

  33. Laugwitz, D., Über unendliche kontinuierliche Gruppen, I. Grundlagen der Theorie; Untergruppen, Math. Annalen 130 (1955), 337–350.

    Article  MathSciNet  MATH  Google Scholar 

  34. Laugwitz, D., —, Über unendliche kontinuierliche Gruppen, II. Strukturtheorie lokal-Banachscher Gruppen, München, Ak. Sb., 1956.

    Google Scholar 

  35. Maissen, B., Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229–269.

    Article  MathSciNet  MATH  Google Scholar 

  36. Mickelsson, J., Current Algebras and Groups, Plenum Press, New York, 1989.

    MATH  Google Scholar 

  37. Moody, R. and A. Pianzola, Lie Algebras with Triangular Decompositions, Canad. Math. Soc. Series of Monographs and Advanced Texts, Wiley-Interscience, 1995.

    Google Scholar 

  38. [Mü02] Müller, Ch., Holomorphic Characters of C X,ℂ x and a Corresponding Borel-Weil Theory, Diploma Thesis, TU Darmstadt, Sept. 2002.

    Google Scholar 

  39. Natarajan, L., E. Rodriguez-Carrington and J. A. Wolf, The Bott-Borel-Weil Theorem for direct limit groups, Transactions of the AMS, 353 (2001), 4583–4622.

    Article  Google Scholar 

  40. Neeb, K.-H., Kahler structures and convexity properties of coadjoint orbits, Forum Math. 7 (1995), 349–384.

    Article  MathSciNet  MATH  Google Scholar 

  41. Neeb, K.-H., —, On the convexity of the moment mapping for a unitary highest weight representation, J. Funct. Anal. 127:2 (1995), 301–325.

    Article  MathSciNet  Google Scholar 

  42. Neeb, K.-H., —, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math. 497 (1998), 171–222.

    MathSciNet  MATH  Google Scholar 

  43. Neeb, K.-H., —, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 1999.

    Google Scholar 

  44. Neeb, K.-H., —, A Cartan-Hadamard Theorem for Banach-Finsler manifolds, Geometriae Dedicata, 95 (2002), 115–156.

    Article  MathSciNet  MATH  Google Scholar 

  45. Neeb, K.-H., —, Integrable roots in split graded Lie algebras, Journal of Algebra 225 (2000), 534–580.

    Article  MathSciNet  MATH  Google Scholar 

  46. Neeb, K.-H., —, Central extensions of infinite-dimensional Lie groups, Annales de l’Inst. Fourier, 52 (2002), 1365–1442.

    Article  MathSciNet  MATH  Google Scholar 

  47. Neeb, K.-H. and N. Stumme, The classification of locally finite split simple Lie algebras, J. reine angew. Mathematik 533 (2001), 25–53.

    MathSciNet  MATH  Google Scholar 

  48. Neher, E., Generators and relations for 3-graded Lie algebras, Journal of Algebra 155:1 (1993), 1–35.

    Article  MathSciNet  Google Scholar 

  49. Neretin, Y. A., On spinor representations of O(∞, ℂ), Sov. Math. Dokl 34:1 (1987), 71–74.

    Google Scholar 

  50. Neretin, Y. A.-, Categories of Symmetries and Infinite-Dimensional Groups, London Math. Soc. Monographs, New Series 16, Clarendon Press, Oxford, 1996.

    Google Scholar 

  51. [0178] Ol’shanskiï, G. I., Unitary representations of the infinite dimensional groups U(p, ∞), Sp 0 (p, ∞), Sp(p, ∞) and the corresponding motion groups, Functional Anal. Appl. 12(1978), 185–191.

    Article  Google Scholar 

  52. Ottesen, J. T., Infinite Dimensional Groups and Algebras in Quantum Physics, Springer-Verlag, Lecture Notes in Physics m 27, 1995.

    Google Scholar 

  53. Palais, R. S., Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  54. Pressley, A. and G. Segal, Loop Groups, Oxford University Press, Oxford, 1986.

    MATH  Google Scholar 

  55. Reed, S. and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.

    MATH  Google Scholar 

  56. Rudin, W., Functional Analysis, McGraw Hill, 1973.

    Google Scholar 

  57. Rudin, W., —, Real and Complex Analysis, McGraw Hill, 1986.

    Google Scholar 

  58. Schue, J. R., Hilbert spaces methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69–80.

    Article  MathSciNet  MATH  Google Scholar 

  59. Schue, J. R., —, Cartan decompositions for L*-algebras, Trans. Amer. Math. Soc. 98 (1961), 334–349.

    MathSciNet  MATH  Google Scholar 

  60. Segal, I. E., The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc. 81 (1957), 197–203

    Article  Google Scholar 

  61. Segal, G., Unitary representations of some infinite-dimensional groups, Comm. Math. Phys. 80 (1981), 301–342.

    Article  MathSciNet  MATH  Google Scholar 

  62. Stumme, N., The structure of locally finite split Lie algebras, Journal of Algebra 220 (1999), 664–693.

    Article  MathSciNet  MATH  Google Scholar 

  63. Stumme, N., —, On the Structure of Locally Finite Split Lie Algebras, Ph.D. thesis, Darmstadt University of Technology, 1999.

    Google Scholar 

  64. Werner, D., Funktionalanalysis, Springer-Verlag, 1995.

    Google Scholar 

  65. Wilansky, A., Modern Methods in Topological Vector Spaces, McGraw Hill, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neeb, KH. (2004). Infinite-Dimensional Groups and Their Representations. In: Anker, JP., Orsted, B. (eds) Lie Theory. Progress in Mathematics, vol 228. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8192-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8192-0_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6483-5

  • Online ISBN: 978-0-8176-8192-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics