Skip to main content

Basic Models of Tumor-Immune System Interactions Identification, Analysis and Predictions

  • Chapter
A Survey of Models for Tumor-Immune System Dynamics

Abstract

The purpose of this chapter is to consider the basic mathematical models of the interaction of cytotoxic cells and effector molecules of the immune system with tumor cells at the effector stage of an anti-tumor immune response. The logic and design lines of some models relevant for tumor immunology will be reviewed and discussed. Special attention is given to validation problems. Mathematical models of the kinetics of interaction of natural killer cells, lymphokine-activated killer cells, cytotoxic T lymphocytes and tumor will be discussed in detail. Some models of the regulation of cellular cytolytic reactions by nonkiller immune cells and by regulatory immune molecules (antibodies, lectins) will be presented. Predictions of kinetic models by a new theoretical concept describing the recognition of target cells without any specific NK-receptor by NK-like cells will been described. Mathematical models of the propagation and interaction of tumorspecific immune molecules (monoclonal antibodies, cytokines) with tumor cells in multicellular tumors are used for analysis of restriction mechanisms for delivering the toxic factor into a solid tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahms S.I. and Brahmi Z., The functional loss of human natural killer cell activity induced by K-562 is reversible via interleukin-2-dependent mechanisms, Cellular Immunology, 101 (1986), 558–570.

    Article  Google Scholar 

  2. Abrahms S.I. and Brahmi Z., Mechanism of K562-induced human natural killer cell inactivation using highly enriched effector cells isolated via a new single-step sheep erythrocyte rosette assay, Ann. Inst. Pasteur Immunology, 139 (1988), 361–381.

    Article  Google Scholar 

  3. Adam J.A., General aspects of modeling tumor growth and immune response, in A Survey of Models for Tumor-Immune System Dynamics, Adam J.A. and Bellomo N. eds., Birkhäuser (1996).

    Google Scholar 

  4. Bardsley W.G., The quantitative analysis of ligand binding and initial rate data for allosteric and other complex enzyme mechanisms, Biochem. J., 153 (1975), 101–117.

    Google Scholar 

  5. Bardsley W.G., Simple enzyme kinetic mechanisms that can give all possible velocity profiles with chemically reasonable rate constant values, J. Theor. Biol, 104 (1983), 485–491.

    Article  Google Scholar 

  6. Bradley T.P. and Bonavida B., Mechanism of cell-mediated cytotoxicity at the single cell level, J. Immunology, 129 (1982), 2260–2265.

    Google Scholar 

  7. Berke G., The cytolytic T lymphocyte and its mode of action, Immunology Letters, 20 (1989), 169–178.

    Article  Google Scholar 

  8. Berke G., The binding and lysis of target cells by cytotoxic lymphocytes: Molecular and cellular aspects, Ann. Rev. Immunology, 12 (1994), 735–773.

    Article  Google Scholar 

  9. Berke G., Unlocking the secrets of CTL and NK cells, Immunology Today, 16 (1995), 343–347.

    Article  Google Scholar 

  10. Bloom E.I. and Korn E.L., Quantification of natural cytotoxicity by human lymphocyte subpopulations isolated by density: Heterogeneity the effector cells, J. Immun. Meth., 58 (1983), 303–335.

    Article  Google Scholar 

  11. Bloom E.I. and Babbitt J.T., Monocyte-mediated augmentation of human natural cell-mediated cytotoxicity, Cellular Immunology, 91 (1995), 21–32.

    Article  Google Scholar 

  12. Bonavida B., Bradley T.P., and Grimm E.A., The single-cell assay in cell-mediated cytotoxicity, Immunology Today, 4 (1983), 196–200.

    Article  Google Scholar 

  13. Bonavida B., Lebow L.T., and Bradley T.P., Mechanism of cell-mediated cytotoxicity at all single cell level. Direct assessment of the cytotoxic potential of human peripheral blood non-lytic effector-target cell conjugates, J. Immunology, 132 (1984), 594–598.

    Google Scholar 

  14. Berezin I.V. and Varfolomeev S.R., Biokinetics, Nauka (1979) (in Russian).

    Google Scholar 

  15. Burnet F.M., Cellular Immunology, Melbourne University Press (1969).

    Google Scholar 

  16. Baxter L.T. and Jain R.K., Transport of fluid and macromolecules in tumors. Role of interstitial and convection, Microvasc. Res., 37 (1989), 77–104.

    Article  Google Scholar 

  17. Bezouska K., Yuen C.-T., O’Brien J., Childs R.A., Chai W., Lawson A.M., Drbal K., Riserova A., Pospisil M., and Feizi T., Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity, Nature, 372 (1994), 150–157.

    Article  Google Scholar 

  18. Callewaert D.M., Johnson D.F., and Kearney J., Spontaneous cytotoxicity of cultured human cell lines mediated by normal peripheral blood lymphocytes. I. Kinetic parameters, J. Immunology, 121 (1978), 710–717.

    Google Scholar 

  19. Callewaert D.M., Meyers P., Hiernaux J., and Radcliff G., Kinetics of cellular cytotoxicity mediated by cloned cytotoxic T lymphocytes, Immunobiology, 178 (1988), 203–214.

    Article  Google Scholar 

  20. Callewaert D.M., Radcliff G., Waite R., LeFevre J., and Poulik M.D., Characterization of effector-target conjugates for cloned human natural killer and human lymphokine activated killer cells by flow cytometry, Cytometry, 12 (1991), 666–676.

    Article  Google Scholar 

  21. Chaplain M., From mutation to metastasis: The mathematical modelling of the stages of tumour development, in A Survey of Models for Tumor-Immune System Dynamics, Adam J.A. and Bellomo N. eds., Birkhäuser (1996).

    Google Scholar 

  22. Colmeraver M.E., Loziol I.A., and Pilch V.H., Enhancement of metastasis development by BCG immunotherapy, J. Surg. Oncology, 15 (1980), 235–241.

    Article  Google Scholar 

  23. Cooper E.L., Phylogenesis of cytotoxicity, Endeavors, 4 (1980), 160–165.

    Article  Google Scholar 

  24. Cornish-Bowden A., Principles of Enzyme Kinetics, Butter-worths (1976).

    Google Scholar 

  25. Chu G., The kinetics of target cell lysis by cytotoxic T lymphocytes: A description by Poisson statistics, J. Immunology, 120 (1978), 1261–1267.

    Google Scholar 

  26. De Vries J.E., Mendelson J., and Bont A., The role of target cell monocytes and Fc receptor bearing lymphocytes in human spontaneous cell-mediated, J. Immunology, 125 (1980), 396–405.

    Google Scholar 

  27. Ferrarini M., Heltai S., Toninelly E., Sabbadini M.G., Pellicciari C., and Manfredi A.M., Daudi lymphoma killing triggers the programmed death of cytotoxic Vγ9/Vδ2 T lymphocytes, J. Immunology, 154 (1995), 3704–3712.

    Google Scholar 

  28. Figdor C.B., van Kooyk Y., and Keizer G.D., On the mode of action of LFA, Immunology Today, 11 (1990), 277-280.

    Google Scholar 

  29. Foa C., Bongrand P., Galindo J.R., and Golstein P.J., Unexpected cell surface labeling in conjugates between cytotoxic T lymphocytes and target cells, Histochem. and Cytochem., 33 (1985), 647–657.

    Article  Google Scholar 

  30. Forni G., Parmiani G., Guarini A., and Foa R., Gene transfer in tumor therapy, Annals of Oncology, 5 (1994), 789–794.

    Google Scholar 

  31. Garay R.P. and Lefever R., A kinetic approach to the immunology cancer stationary state properties of effector-target reaction, J. Theor. Biol., 73 (1978), 417–438.

    Article  MathSciNet  Google Scholar 

  32. Gergely J. and Sarmay G., IgG-Fc-receptors: Ligand binding and lysis induction, Immunology Letters, 20 (1989), 1–4.

    Article  Google Scholar 

  33. Goud B. and Antoine J.C., Emergence of a surface immunoglobulin recycling process during B lymphocyte differentiation J. Cell. Biol., 48 (1984), 1238–1246.

    Article  Google Scholar 

  34. Griffiths G.M., The cell biology of CTL killing, Current Opinion in Immunology, 7 (1995), 343–348.

    Article  Google Scholar 

  35. Gumpertz J.E. and Parhan P., The enigma of natural killer cell, Nature, 378 (1995), 245–248.

    Article  Google Scholar 

  36. Herberman R.B., Vujanovic N., Rabinowich H., and Whitside T.L., Natural killer cells and interleukin-2-activated killer cells, in Lym-phohaemotopoietic Growth Factors in Cancer Therapy, II, Mertelsmann R. ed., Springer (1993), 11–27.

    Google Scholar 

  37. Hoang T., Tsodikov A., Yakovlev A., and Asselain B., Modeling breast cancer recurrence, in Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. II, Arino O., Axelrod D., and Kimmel M. eds., Wuerz Publishing Ltd. (1995), 283–296.

    Google Scholar 

  38. Hiserodt J.C., Britvan L.J., and Targan S.R., Characterization of the cytolytic reaction mechanism of the human natural killer (NK) lymphocyte: Resolution into binding, programming and killer cell-independent steps, J. Immunology, 131 (1983), 2710–2713.

    Google Scholar 

  39. Herrick M.V. and Pollack S.B., Kinetic analysis of antibody dependent cellular cytotoxicity: Evidence for noncompetitive inhibition by autologous lymphoid cells, J. Immunology, 121 (1978), 1348–1352.

    Google Scholar 

  40. Herlyn M. and Koprowski H., Melanoma antigens: Immunological and biological characterization and clinical significance, Ann. Rev. Immunology, 6 (1988), 299–308.

    Google Scholar 

  41. Iho S. and Shau H., Role of enhanced cellular adhesion in IL-6-augmented lymphokine-activated killer-cell function, Scand. J. Immunol, 39 (1993), 233–240.

    Article  Google Scholar 

  42. Ivshina A.V., Kuznetsov V.A., and Kadagidze Z.G., Interaction of the human natural killer cells with target cells. The quantity estimations, in Dynamics of Biological Populations, Goryachenko D.D. ed., Gor’ki State Univ. Press (1985), 72–83 (in Russian).

    Google Scholar 

  43. Jenski L.J., Kinetic assay of cytotoxic T lymphocyte clones II: Comparison of primary and secondary responses and lectin-dependent cytotoxicity. J. Immunol. Meth., 117 (1989), 191–198.

    Article  Google Scholar 

  44. Jain R.K., Barriers to drug delivery in solid tumors, Sci. Amer., 271 (1994), 58–65.

    Article  Google Scholar 

  45. Jung G. and Eberhard H.J.M., An in vitro model for tumour immunotherapy with antibody heteroconjugates, Immunology Today, 9 (1988), 257–260.

    Article  Google Scholar 

  46. Juweid M., Neumann R., and Paik Ch., Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier, Cancer Res., 52 (1992), 5144–5153.

    Google Scholar 

  47. Karre K., Hanson M., and Kiesling R., Multiple interactions at the natural killer workshop, Immunology Today, 12 (1991), 343–345.

    Article  Google Scholar 

  48. Kimber I. and Moore M., Mechanism and regulation of natural cytotoxicity, Exp. Cell. Biol., 53 (1985), 69–84.

    Google Scholar 

  49. Kwok C.S., Cole S.E., and Liao S.K., Uptake kinetics of monoclonal antibodies by human malignant melanoma multicell spheroids, Cancer Res., 48 (1988), 1856–1863.

    Google Scholar 

  50. Kwok C.S., Crivici A., MacGregor W.D., and Unger M.W., Optimization of radioimmunotherapy using human malignant melanoma multicellspheroids as a model, Cancer Res., 49 (1989), 3276–3281.

    Google Scholar 

  51. Konev C.B., Structural Liability of Biological Membranes and Regulatory Processes, Nauka & Technika (1987) (in Russian).

    Google Scholar 

  52. Kometiany Z.P. and Vekua M.G., Kinetics of Membrane Enzymes, Vysshaya Shkola (1988) (in Russian).

    Google Scholar 

  53. Kunisch K. and Scheich H., Parameter estimation in a spatial reaction diffusion system modelling man-environment diseases, J. Math. Biology, 27 (1989), 633–665.

    Article  MATH  Google Scholar 

  54. Kawade Y., Neutralization of activity of effector protein by monoclonal antibody: Formulation of antibody dose-dependence, of neutralization for an equilibrium system of antibody, effector and its cellular receptor, Immunology, 56 (1985), 497–504.

    Google Scholar 

  55. Kuznetsov V.A., The dynamics of cellular immunological antitumor reactions. I. Synthesis of a multi-level model, in Mathematical Methods of Systems Theory, Fedorov V.D. ed., Kyrghiz State Univ. Press, 1 (1979), 57–71 (in Russian).

    Google Scholar 

  56. Kuznetsov V.A. and Volkenshtein M.V., Dynamics of immunological cellular antitumor reactions. II. Qualitative analysis of the model, in Mathematical Methods of Systems Theory, Fedorov V.D. ed., Kyrghiz State Univ. Press, 1 (1979), 72–100 (in Russian).

    Google Scholar 

  57. Kuznetsov V.A., Asymptotics of solutions of the singular perturbation problems in study of the enzyme-like kinetics equation system, in Studying of Integral Differential Equations, Imanaliev M. ed., Ilym, 15 (1982), 262–270 (in Russian).

    Google Scholar 

  58. Kuznetsov V.A., Analysis of population dynamics of cells exhibiting natural resistance to tumors, Soviet Immunology, 3 (1984), 58–68.

    Google Scholar 

  59. Kuznetsov V.A., Ivshina A.V., and Kadaghidze Z.G., Computerized determination of the number of active natural killer cells, their avidity and rate of recycling during lytic cycle, Soviet Immunology, 5 (1988), 33–38.

    Google Scholar 

  60. Kuznetsov V.A., Dynamics of Immune Processes During Tumor Growth, Nauka (1992) (in Russian).

    Google Scholar 

  61. Kuznetsov V.A., The NK cell recognition of target-cells without specific NK-receptor: A biophysical model, Immunologiya, 3 (1992), 8–13 (in Russian).

    Google Scholar 

  62. Kuznetsov V.A. and Stepanova L.A., Space-time waves and dissipa-tive structures in a model of growth of tumors infiltrated by immune lymphocytes, in Lecture Notes of the ICB Seminars Biosystems, Marchuk G. and Werynski A. eds., Intern. Center of Biocy-bernetics (1992), 68–111.

    Google Scholar 

  63. Kuznetsov V.A., Zhivoglyadov V.P., and Stepanova L.A., Kinetic approach and estimation of parameters of cellular interaction between immune system and a tumor, Archivium Immunologiae et Therapie Experimentalis, 41 (1993), 21–32.

    Google Scholar 

  64. Kuznetsov V.A., Makalkin I., Taylor M.A., and Perelson A.S., Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcations analysis, Bull. Mathem. Biology, 56 (1994), 295–321.

    MATH  Google Scholar 

  65. Kuznetsov V.A. and Borisova L.P., Kinetics model of the interleukin-4 (IL-4) binding to high affinity IL-4 receptor and their internalization, in Differential Equations and Applications to Biology and to Industry, Martelli M., Cooke K., Cumberbatch E., Tang B., and Thieme H. eds., World Scientific (1995), 271–280.

    Google Scholar 

  66. Kuznetsov V.A., Ivshina A.V., Sen’ko O.V., and Kuznetsova A.Z., Syndrome approach for computer recognition of fuzzy systems and its application to immunological diagnostics and prognosis of human cancer, Math. Comput. Modeling, 23 (1996), 92–112.

    Article  Google Scholar 

  67. Kuznetsov V.A., “Harpoon” model for cell-cell adhesion and recognition of target cells by the natural killer cells, J. Theor. Biol. (1996) to appear.

    Google Scholar 

  68. Lefever R., Hiernaux J., Urbain J., and Meyers P., On the kinetics and optimal specificity of cytotoxic reactions mediated by T lymphocyte clones, Bull. Math. Biol., 54 (1992), 839–873.

    MATH  Google Scholar 

  69. Look A.T., Schriber T.J., Nawrocki J.F., and Murphy W.H., Computer simulation of the cellular immune response to malignant lymphoid cells logic of approach model design and laboratory verification, Immunology, 43 (1981), 677–690.

    Google Scholar 

  70. Lumb J.R., The value of theoretical models in immunological research, Immunology Today, 4 (1983), 209–210.

    Article  Google Scholar 

  71. Lomakin M.S., Immunobiological Surveillance, Medicine (1990) (in Russian).

    Google Scholar 

  72. Liu M.A., Kranz D.M., Kurnick J.T., Boyle L.A., Levy R., and Eisen H.N., Maintenance and cure of the L5178 murine tumour dormant state by lnterleukin-2: In vivo and in vitro effects, Proc. Natl. Acad. Sci. USA, 82 (1985), 3648–8652.

    Google Scholar 

  73. Leeuwenberg J.F., Spitz H., Tax W.J., and Capel P.J.A., Induction of nonspecific cytotoxicity by monoclonal anti-T3 antibodies, J. Immunology, 134 (1985), 3770–3775.

    Google Scholar 

  74. Macken C.A. and Perelson A.S., Aggregation of cell surface receptors by multivalent ligands, J. Immunology, 132 (1984), 1614–1624.

    Google Scholar 

  75. Michelson S. and Leith J.T., Tumor heterogeneity and growth control, in A Survey of Models for Tumor-Immune System Dynamics, Adam J.A. and Bellomo N. eds., Birkhäuser (1996).

    Google Scholar 

  76. Meuer S.C., Hussey R.E., Hodgon J.C., Hercend T., Schlossman S.E., and Reinherz E.L., Lymphocyte mediated lysis, Science, 218 (1982), 471–473.

    Article  Google Scholar 

  77. McFadden R. and Kwok C.S., Mathematical model of simultaneous diffusion and binding of antitumor antibodies in multicellular human tumor spheroids, Cancer Res., 48 (1988), 4032–4037.

    Google Scholar 

  78. Mahle N.H., Radclif G., Sevella C.L., Kornbluth J., and Callewaert D.M., Kinetics of cellular cytotoxicity mediated by a cloned human natural killer cell line, Immunobiol., 179 (1989), 230–243.

    Article  Google Scholar 

  79. Miller R.G. and Dunkley M., Quantitative analysis of the Cr release cytotoxicity assay for cytotoxic lymphocytes, Cellular Immunology, 14 (1974), 284–292.

    Article  Google Scholar 

  80. McKinnon D. and Hodgkin P.D., A model of a T cell-target interaction leading to lymphokine release, Immunol. Cell. Biol., 65 (1987), 443–451.

    Article  Google Scholar 

  81. Merrill S.J., Foundation of the use of enzyme kinetic analogy in cell-mediated cytotoxicity, Math. Biosciences, 62 (1982), 219–236.

    Article  MathSciNet  MATH  Google Scholar 

  82. Merrill S.J. and Sathananthan S., Approximation Michaelis-Menten kinetics displayed in a stochastic model of cell-mediated cytotoxicity, Math. Biosci., 80 (1986), 223–238.

    Article  MathSciNet  MATH  Google Scholar 

  83. Mellman J. and Plutner P., Internalization and rapid recycling by macrophage Fc-receptors with monovalent antireceptor antibodies a possible role of relysomal compartment, J. Cell. Biol., 98 (1984), 1163–1169.

    Article  Google Scholar 

  84. Moretta A., Vitale M., Sivori S., Bottino C., Morelli L., Angagliaro R., Bararesi M., Pele O., Ciccone E., Lopez-Bolet M., and Moretta L., Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp 43 (CD 94) molecule functions as receptors for HLA-B alleles, J. Exp. Med., 180 (1994), 454–555.

    Article  Google Scholar 

  85. Martz E., Mechanism of specific tumor cell lysis by alloimmune T lymphocytes: Resolution and characterization of descreate stages in cellular interaction, Contemporary Topics in Immunology, 7 (1977), 301–361.

    Article  Google Scholar 

  86. Murray J.D., Lectures on Nonlinear Equation Models in Biology, Clarendon Press (1977).

    Google Scholar 

  87. Nugent L.J. and Jain R.K., Extravascular diffusion in normal and neoplastic tissues, Cancer Res., 44 (1984), 238–244.

    Google Scholar 

  88. Ong G.L. and Mattes M.J., Penetration and binding of antibodies in experimental human solid tumors grown in mice, Cancer Res., 49 (1989), 4264–4273.

    Google Scholar 

  89. Ortaldo J.R., Glenn G.M., Yong H.A., and Frey J.L., Natural killer (NK) cell dysfunction and putative NK cell receptor expression abnormality in members of a family with chromosome 3p-linked von Hippel-Lindau disease, J. Natl. Cancer Inst., 84 (1992), 1897–1902.

    Article  Google Scholar 

  90. Pankov P.S., Kuznetsov V.A., and Kenenbaeva G.M., Algorithm of the global search and the program package for approximation of kinetic experimental data at known measure errors, Preprint Inst, of Chem. Phys. of USSR Acad, of Sciences, Moscow (1990), 42 (in Russian).

    Google Scholar 

  91. Perelson A.S. and Bell G.I., Delivery of lethal hits by cytotoxic T lymphocytes in multicellular conjugates occurs sequentially but at random times, J. Immunology, 129 (1982), 2796–2801.

    Google Scholar 

  92. Perelson A.S., Macken C.A., Grimm E.A., Roos L.S., and Bonavida B., Mechanism of cell-mediated cytotoxicity at the single cell level. V. Kinetics of lysis of target cells bound by more than one cytotoxic T lymphocyte, J. Immunology, 132 (1984), 2190–2198.

    Google Scholar 

  93. Pollack S.B. and Emmons S.L., Kinetic analysis of human spontaneous cell-mediated cytotoxicity, J. Immunology, 123 (1979), 160–165.

    Google Scholar 

  94. Prehn R., Stimulatory effects of immune reactions upon the growth of untransplantated tumors, Cancer Res., 54 (1994), 908–914.

    Google Scholar 

  95. Pross H.F., Callewaert D., and Rubin P., Assays for NK cell cytotoxicity: Their values and pitfalls, in Immunobiology of Natural Killer Cells, Lotzova E. ed., CRC Press (1986), 1–20.

    Google Scholar 

  96. Provinciali M., Fabris N., and Pieri C., Improvement of natural killer cell activity by in vitro active lipids (AL 721) administration in old mice, Mechanisms of Aging and Development, 52 (1990), 245–254.

    Article  Google Scholar 

  97. Perez P., Bluestone J.A., Stephany D.A., and Segal D.M., Quantitative measurements of the specificity and kinetics of conjugate formation between cloned cytotoxic T lymphocytes and splenic target cells by dual parameter flow cytometry, J. Immunology, 134 (1985), 478–485.

    Google Scholar 

  98. Reiter Z., Reiter Y., Fishelson Z., Shinitzky M., Kessier A., Loyter A., Nussbaum O., and Rubinstein M., Resistance to NK cell mediated cytotoxicity (in K-562 Cells) does not correlate with Class I MHC antigen levels, Immunology, 183 (1991), 23–39.

    Google Scholar 

  99. Robertson M.J., Caliguiri M.A., Manley T.J., Levine H., and Ritz J., Biphasic responses, signals and cellular behaviour, J. Immunology, 145 (1990), 3194–3201.

    Google Scholar 

  100. Roozemond R.C. and Bonavida B., Effect of altered membrane fluidity on NK cell-mediated cytotoxicity. I. Selective inhibition of the recognition or post recognition events in the cytolytic pathway of NK cells, J. Immunology, 134 (1985), 2209–2214.

    Google Scholar 

  101. Roozemond R.C. and Bonavida B., Effect of altered membrane structure on NK-mediated cytotoxicity: Conversion of NK-resistant tumour cells into NK-sensitive targets upon fusion with liposomes containing NK-sensitive membranes, J. Immunology, 136 (1986), 3921–3928.

    Google Scholar 

  102. Roozemond R.C., van der Geer P., and Bonavida B., NK-resistant tumor cells become susceptible to NK lysis upon fusion with reconstituted liposomes containing NK-sensitive membrane structures, in Membrane-Mediated Cytotoxicity, Bonavida B. and Coller R.J. eds., Liss (1987), 173–187.

    Google Scholar 

  103. Sakharov D.V., Matveev M.Yu., and Domogatsky S., Binding of affinity ligand with a three-dimensional target: The role of diffusion limitations, Biophysika, 36 (1991), 49–54 (in Russian).

    Google Scholar 

  104. Segel L.A., On the validity of the steady state assumption of enzyme kinetics, Bull, of Math. Biol., 50 (1988), 579–593.

    MathSciNet  MATH  Google Scholar 

  105. Sharon N., Surface carbohydrates and surface lectins are recognition determinants in phagocytosis, Immunology Today, 5 (1984), 143–147.

    Article  Google Scholar 

  106. Seung L.P., Seung S.K., and Schereiber H., Antigenic cancer cells that escape immune destruction are stimulated by the host cells, Cancer Res., 55 (1995), 5094–5100.

    Google Scholar 

  107. Solono-Munoz G., McGinley P.B., Woolfson R., and Bardsley W.G., Deviations from Michaelis-Menten kinetics, Biochem. J., 193 (1981), 339–352.

    Google Scholar 

  108. Shau H. and Golub H., Modulation of natural killer-mediated lysis by red blood cells, Cellular Immunology, 116 (1988), 60–72.

    Article  Google Scholar 

  109. Thiele D.L. and Lipsky E., The role of cell surface recognition structures in the initiation of MHC-unrestricted “promiscuous” killing by T cells, Immunology Today, 10 (1989), 375–381.

    Article  Google Scholar 

  110. Thoma J.A., Thoma G.J., and Clark W., The efficiency linearity of the radiochromium release assay for cell-mediated cytotoxicity, Cellular Immunology, 40 (1978), 404–418.

    Article  Google Scholar 

  111. Timonen T., Patarroyo M., and Gahmberg C.G., CDIIa-c/CD18 and GP84(LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing, J. Immunology, 141 (1988), 1041–1046.

    Google Scholar 

  112. Thorn R.M. and Henny C.S., Enumeration of specific cytotoxic T cells, Nature, 262 (1976), 75–77.

    Article  Google Scholar 

  113. Thorn R.M. and Henny C.S., Kinetic analysis of target cell distinction by effector T cells. I. Delineation of parameters related to the frequency, J. Immunology, 117 (1976), 2213–2219.

    Google Scholar 

  114. Thorn R.M. and Henny C.S., Kinetic analysis of target cells distinction by effector T cells. II. Changes in killer cell avidity as function of time and dose, J. Immunology, 119 (1977), 1973–1978.

    Google Scholar 

  115. Tutt A., Greenman J., Stevenson G.T., and Glennie M.J., Bispecific F(abγ)3 antibody derivatives for redirecting unprimed cytotoxic T cells, Eur. J. Immunology, 21 (1991), 1351–1358.

    Article  Google Scholar 

  116. Ullberg M. and Jondal M., Recycling and target binding capacity of human natural killer cells, J. Exp. Med., 153 (1981), 615–628.

    Article  Google Scholar 

  117. Vasiljeva L.B. and Butuzov V.F., Asymptotic Analysis, Nauka (1973) (in Russian).

    Google Scholar 

  118. Vitolo D., Vujanovic N.L., Rabinowich H., Schlesinger M., Herber-man R.B., and Whiteside T.L., Rapid Il-2-induced adherence of human natural killer cells: Expression of mRNA for cytokines and IL-2 receptors in adherent NK cells, J. Immunology, 151 (1993), 1926–1937.

    Google Scholar 

  119. Van Oers M.H.J., De Goede R.E.Y., and Zeijlemaker W.R, Antibody dependent cytotoxicity: An analysis of effector cell-target cell interactions, J. Immunology, 121 (1978), 499–504.

    Google Scholar 

  120. Weinstein J.N. and Van Osdol W., Early intervention in cancer using monoclonal antibodies and other biological ligands: Microphar-macology and the “binding site barrier”, Cancer Res., 52 (1992), 2747–2751.

    Google Scholar 

  121. Yokoyama W.M. and Seaman W.E., The Ly-49 and NKR-1 gene families encoding lectin-like receptors on natural killer cells: The NK gene complex, Annual Rev. Immunology, 11 (1993), 613–635.

    Article  Google Scholar 

  122. Zeijlemaker W.P., van Oers R.H., deCoede R.E., and Schellekens P.T., Cytotoxic activity of human lymphocytes: Quantitative analysis of T cell and K cell cytotoxicity, revealing enzyme-like kinetics, J. Immunology, 119 (1977), 1507–1514.

    Google Scholar 

  123. Zugary D., Bernardi J., and Jeannesson P., Studies on the mechanism of T-cell lethal hits and target cell lysis in multicellular conjugates, J. Immunology, 123 (1979), 1604–1609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuznetsov, V.A. (1997). Basic Models of Tumor-Immune System Interactions Identification, Analysis and Predictions. In: Adam, J.A., Bellomo, N. (eds) A Survey of Models for Tumor-Immune System Dynamics. Modeling and Simulation in Science, Engineering, & Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8119-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8119-7_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6408-8

  • Online ISBN: 978-0-8176-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics