Skip to main content

Crystallographic Haar-Type Composite Dilation Wavelets

  • Chapter
  • First Online:
Book cover Wavelets and Multiscale Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

An (a, B, Γ) composite dilation wavelet system is a collection of functions generating an orthonormal basis for L 2( n) under the actions of translations from a full rank lattice, Γ, dilations by elements of B, a subgroup of the invertible n ×n matrices, and dilations by integer powers of an expanding matrix a. A Haar-type composite dilation wavelet system has generating functions which are linear combinations of characteristic functions. Krishtal, Robinson, Weiss, and Wilson introduced three examples of Haar-type (a, B, Γ) composite dilation wavelet systems for L 2( 2) under the assumption that B is a finite group which fixes the lattice Γ. We establish that for any Haar-type (a, B, Γ) composite dilation wavelet, if B fixes Γ, known as the crystallographic condition, B is necessarily a finite group. Under the crystallographic condition, we establish sufficient conditions on (a, B, Γ) for the existence of a Haar-type (a, B, Γ) composite dilation wavelet. An example is constructed in n and the theory is applied to the 17 crystallographic groups acting on 2 where 11 are shown to admit such Haar-type systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Armstrong. Groups and symmetry. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  2. J. D. Blanchard. Minimally supported frequency composite dilation wavelets. J. Fourier Anal. App. Online First, 2009, DOI:10.1007/s00041-009-9080-2.

    Google Scholar 

  3. J. D. Blanchard. Minimally supported frequency composite dilation Parseval frame wavelets. J. Geo. Anal., 19(1):19–35, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. D. Blanchard and I. A. Krishtal. Matricial filters and crystallographic composite dilation wavelets. submitted, 2009, http://www.math.grin.edu/~blanchaj/Research/MFCCDW_BlKr.pdf

  5. E. Candès and D. L. Donoho. Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357(1760):2495–2509, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Candès and D. L. Donoho. Curvelets and curvilinear integrals. J. Approx. Theory, 113(1):59–90, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 41(7):909–996, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

    Google Scholar 

  9. G. Easley, D. Labate, and W. Lim. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal., 25(1):25–46, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Gröchenig and W. R. Madych. Multiresolution analysis, Haar bases, and self-similar tilings of R n. IEEE Trans. Inform. Theory, 38(2, part 2):556–568, 1992.

    Google Scholar 

  11. L. C. Grove and C. T. Benson. Finite reflection groups, volume 99 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1985.

    MATH  Google Scholar 

  12. K. Guo, G. Kutyniok, and D. Labate. Sparse multidimensional representations using anisotropic dilation and shear operators. In Wavelets and splines: Athens 2005, Mod. Methods Math., pages 189–201. Nashboro Press, Brentwood, TN, 2006.

    Google Scholar 

  13. K. Guo and D. Labate. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal., 39(1):298–318, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Guo, D. Labate, W. Lim, G. Weiss, and E. N. Wilson. Wavelets with composite dilations. Electron. Res. Announc. Amer. Math. Soc., 10:78–87, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Guo, D. Labate, W. Lim, G. Weiss, and E. N. Wilson. The theory of wavelets with composite dilations. In Harmonic analysis and applications, Appl. Numer. Harmon. Anal., pages 231–250. Birkhäuser Boston, Boston, MA, 2006.

    Google Scholar 

  16. K. Guo, D. Labate, W. Lim, G. Weiss, and E. N. Wilson. Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal., 20(2):202–236, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Haar. Aur theorie der orthogonalen Funcktionensysteme. Math. Annalen, 69:331–371, 1910.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Hernández and G. Weiss. A first course on wavelets. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996.

    Book  MATH  Google Scholar 

  19. R. Houska. The nonexistence of shearlet-like scaling multifunctions that satisfy certain minimally desirable properties and characterizations of the reproducing properties of the integer lattice translations of a countable collection of square integrable functions. Ph.D. dissertation, 2009. Washington University in St. Louis.

    Google Scholar 

  20. I. Krishtal, B. Robinson, G. Weiss, and E. N. Wilson. Some simple Haar-type wavelets in higher dimensions. J. Geom. Anal., 17(1):87–96, 2007.

    MathSciNet  MATH  Google Scholar 

  21. G. Kutyniok and D. Labate. Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc., 361(5):2719–2754, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. MacArthur. Compatible dilations and wavelets for the wallpaper groups. preprint, 2009.

    Google Scholar 

  23. J. MacArthur and K. Taylor. Wavelets from crystal symmetries. preprint, 2009.

    Google Scholar 

  24. A. Ron and Z. Shen. Affine systems in \({L}_{2}({\mathbb{R}}^{d})\): the analysis of the analysis operator. J. Funct. Anal., 148(2):408–447, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Schattschneider. The plane symmetry groups: their recognition and notation. Amer. Math. Monthly, 85(6):439–450, 1978.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the University of Utah VIGRE program funded by NSF DMS grant number 0602219. JDB was partially funded as a VIGRE research assistant professor. KRS was funded through a year-long REU. The authors thank Guido Weiss, Ed Wilson, Ilya Krishtal, Keith Taylor, and Josh MacArthur for our rewarding conversations regarding CHCDW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Blanchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blanchard, J.D., Steffen, K.R. (2011). Crystallographic Haar-Type Composite Dilation Wavelets. In: Cohen, J., Zayed, A. (eds) Wavelets and Multiscale Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8095-4_5

Download citation

Publish with us

Policies and ethics