Skip to main content

Other Contributions

  • Chapter
G.W. Stewart

Part of the book series: Contemporary Mathematicians ((CM))

  • 1344 Accesses

Abstract

The preceding seven chapters of this commentary had outlined some of Stewart’s important contributions to matrix algorithms and matrix perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.Anderson, Z.Bai, C.Bischof, S.Blackford, J.Demmel, J.Dongarra, J.DuCroz, A.Greenbaum, S.Hammarling, A.McKenney, etal. LAPACK Users’ Guide. SIAM, Philadelphia, PA, 3 edition, 1999. 31, 35, 100, 108

    Google Scholar 

  2. Y.-H. Au-Yeung. Some theorems on real pencil and simultaneous diagonalization of two Hermitian bilinear forms. Proceedings of the American Mathematical Society, 23:246–253, 1969. 109

    Google Scholar 

  3. Y.-H. Au-Yeung. A theorem on mapping from a sphere to the circle and the simultaneous diagonalization of two Hermitian matrices. Proceedings of the American Mathematical Society, 20:545–548, 1969. 109

    Google Scholar 

  4. Z.Bai. The CSD, GSVD, their applications and computations. IMA Preprint Series 958, Institute of Mathematics and Applications, University of Minnesota, 1992. 109

    Google Scholar 

  5. Z.Bai and J.Demmel. On swapping diagonal blocks in real Schur form. Linear Algebra and Its Applications, 185:203–218, 1993. 101

    Google Scholar 

  6. J.Barlow and J.W. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM Journal on Numerical Analysis, 27(3):762–791, 1990. 84

    Google Scholar 

  7. J.B. Barlow, M.M. Monahemi, and D.P. O’Leary. Constrained matrix Sylvester equations. SIAM Journal on Matrix Analysis and Applications, 13:1–9, 1992. 38

    Google Scholar 

  8. J.L. Barlow, H.Erbay, and I.Slapnicar. An alternative algorithm for the refinement of ULV decompositions. SIAM Journal on Matrix Analysis and Applications, 27(1):198–211, 2006. 59

    Google Scholar 

  9. J.G.P. Barnes. An algorithm for solving non-linear equations based on the secant method. The Computer Journal, 8(1):66, 1965. 51

    Google Scholar 

  10. R.H. Bartels and G.H. Golub. The simplex method of linear programming using LUdecomposition. Communications of the ACM, 12:266–268, 1969. 49

    Google Scholar 

  11. F.L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme. Z. Angew. Math. Phys., 8:214–235, 1957. 96, 98

    Google Scholar 

  12. A.Ben-Israel. On error bounds for generalized inverses. SIAM Journal on Numerical Analysis, pages 585–592, 1966. 63

    Google Scholar 

  13. M.W. Berry. Private communication, Aug., 2009. 43, 44

    Google Scholar 

  14. R.Bhatia and R.-C. Li. On perturbations of matrix pencils with real spectra. II. Mathematics of Computation, 65(214):637–645, 1996. 109

    Google Scholar 

  15. Å.Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996. 53, 65, 70

    Google Scholar 

  16. Å.Björck and G.H. Golub. Numerical methods for computing angles between linear subspaces. Mathematics of Computation, 27:579–594, 1973. 66

    Google Scholar 

  17. A.D. Bojanczyk, J.G. Nagy, and R.J. Plemmons. Block RLS using row Householder reflections. Linear Algebra and Its Applications, 188:31–61, 1993. 45

    Google Scholar 

  18. C.G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 19:577–593, 1965. 51

    Google Scholar 

  19. C.G. Broyden. On the discovery of the ‘good Broyden’ method. Mathematical Programming, 87(2):209–213, 2000. 51

    Google Scholar 

  20. R.A. Brualdi. Private communication, Aug. 17, 2009. 121

    Google Scholar 

  21. J.R. Bunch. Private communication, Sep. 24, 2009. 30

    Google Scholar 

  22. R.Byers and D.Kressner. Structured condition numbers for invariant subspaces. SIAM Journal on Matrix Analysis and Applications, 28(2):326–347, 2006. 92

    Google Scholar 

  23. Z.Cao and F.Zhang. Direct methods for ordering eigenvalues of a real matrix. Chinese University Journal of Computational Mathematics, 1:27–36, 1981. (in Chinese). 100

    Google Scholar 

  24. X.W. Chang and C.C. Paige. On the sensitivity of the LU factorization. BIT, 38(3):486–501, 1998. 41

    Google Scholar 

  25. M.Clint and A.Jennings. A simultaneous iteration method for the unsymmetric eigenvalue problem. Journal of the Institute of Mathematics and Its Applications, 8:111–121, 1971. 98

    Google Scholar 

  26. P.-J. Courtois. Error analysis in nearly-completely decomposable stochastic systems. Econometrica, 43(4):691–709, 1975. 82, 83

    Google Scholar 

  27. P.-J. Courtois. Decomposability. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1977. Queueing and computer system applications, ACM Monograph Series. 82, 83

    Google Scholar 

  28. C.R. Crawford. A stable generalized eigenvalue problem. SIAM Journal on Numerical Analysis, 6:854–860, 1976. 109

    Google Scholar 

  29. G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963. 48, 54

    Google Scholar 

  30. C.Davis and W.M. Kahan. Some new bounds on perturbations of subspaces. Bull. Amer. Math. Soc, 75:863–868, 1969. 66, 72, 73

    Google Scholar 

  31. C.Davis and W.M. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM Journal on Numerical Analysis, pages 1–46, 1970. 66, 72, 73, 104, 109

    Google Scholar 

  32. D.Day. How the QR algorithm fails to converge and how to fix it. Tech Report 96-0913J, Sandia National Laboratory, April 1996. 100

    Google Scholar 

  33. J.Demmel. The Condition Number of Equivalence Transformations that Block Diagonalize Matrix Pencils. SIAM Journal on Numerical Analysis, 20(3):599–610, June 1983. 104

    Google Scholar 

  34. J.Demmel and B.Kågström. Computing stable eigendecompositions of matrix pencils. Linear Algebra and Its Applications, 88–89:139–186, 1987. 106

    Google Scholar 

  35. J.W. Demmel. Computing stable eigendecompositions of matrices. Linear Algebra and Its Applications, 79:163–193, 1986. 92

    Google Scholar 

  36. J. W. Demmel and K.Veselić. Jacobi’s method is more accurate than QR. SIAM Journal on Matrix Analysis and Applications, 13(4):1204–1245, 1992. 84

    Google Scholar 

  37. I.I. Dikin. On convergence of an iterative process. Upravlyaemye Systemy, 12:54–60, 1974. In Russian. 70

    Google Scholar 

  38. J.Dongarra, S.Hammarling, and J.Wilkinson. Numerical considerations in computing invariant subspaces. SIAM Journal on Matrix Analysis and Applications, 13:145–161, 1992. 100

    Google Scholar 

  39. J.J. Dongarra, P.Luszczek, and A.Petitet. The Linpack benchmark: Past, present and future. Concurrency: Practice and Experience, 15(9):803–820, 2003. 31

    Google Scholar 

  40. P.Drineas, R.Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2007. 45

    Google Scholar 

  41. P.Drineas, R.Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2007. 45

    Google Scholar 

  42. P.Drineas, R.Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1):184–206, 2007. 45

    Google Scholar 

  43. P.Drineas, M.W. Mahoney, and S.Muthukrishnan. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30:844–881, 2008. 45

    Google Scholar 

  44. S.Eastman and D.Estep. A power method for nonlinear operators. Appl. Anal., 86(10):1303–1314, 2007. 93

    Google Scholar 

  45. L.Elsner and P.Lancaster. The spectral variation of pencils of matrices. J. Comp. Math., 3(3):262–274, 1985. 106

    Google Scholar 

  46. L.Elsner and J.-G. Sun. Perturbation theorems for the generalized eigenvalue problem. Linear Algebra and Its Applications, 48:341–357, 1982. 106

    Google Scholar 

  47. H.Erbay, J.L. Barlow, and Z.Zhang. A modified Gram–Schmidt-based downdating technique for ULV decompositions with applications to recursive TLS problems. Computational Statistics and Data Analysis, 41(1):195–209, 2002. 57

    Google Scholar 

  48. S.P. Evans. A quasi-stationary analysis of a virtual path in a B-ISDN network shared by services with very different characteristics. Computer Networks and ISDN Systems, 20(1-5):391–399, 1990. 93

    Google Scholar 

  49. D.K. Faddeev, V.N. Kublanovskaya, and V.N. Faddeeva. Solution of linear algebraic systems with rectangular matrices. Proc. Steklov Inst. Math, 96:93–111, 1968. Reference provided by J. L. Barlow. 56

    Google Scholar 

  50. H.-r. Fang and Y.Saad. Two classes of multisecant methods for nonlinear acceleration. Numerical Linear Algebra with Applications, 16(3):197–221, 2009. 51

    Google Scholar 

  51. R.D. Fierro and J.R. Bunch. Bounding the subspaces from rank revealing two-sided orthogonal decompositions. SIAM Journal on Matrix Analysis and Applications, 16:743–759, 1995. 57

    Google Scholar 

  52. K.Fukui, B.G. Sumpter, D.W. Noid, C.Yang, and R.E. Tuzun. Analysis of eigenvalues and eigenvectors of polymer particles: random normal modes. Computational and Theoretical Polymer Science, 11(3):191–196, 2001. 92

    Google Scholar 

  53. B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler. Matrix eigensystem routines EISPACK Guide extension, 1977. Volume 51 of Lecture Notes in Computer Science. 31

    Google Scholar 

  54. P.E. Gill, G.H. Golub, W.Murray, and M.A. Saunders. Methods for modifying matrix factorizations. Mathematics of Computation, 28:505–535, 1974. 49, 51, 52, 54

    Google Scholar 

  55. P.E. Gill, W.Murray, and M.H. Wright. Practical Optimization. Academic Press, New York, 1981. 49

    Google Scholar 

  56. G.Golub and W.Kahan. Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indust. Appl. Math.: Ser. B, Numer. Anal., 2:205–224, 1965. 104

    Google Scholar 

  57. G.H. Golub, S.Nash, and C.Van Loan. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans. on Automatic Control, AC-24:909–913, 1979. 38

    Google Scholar 

  58. G.H. Golub and V.Pereyra. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM Journal on Numerical Analysis, 10:413–432, 1973. 67

    Google Scholar 

  59. G.H. Golub and J.H. Wilkinson. Note on the iterative refinement of least squares solution. Numerische Mathematik, 9(2):139–148, 1966. 64

    Google Scholar 

  60. M.Gu. Finding well-conditioned similarities to block-didagonalize nonsymmetric matrices is NP-hard. Journal of Complexity, 11:377–391, 1995. 104

    Google Scholar 

  61. M.Gu and S.C. Eisenstat. Downdating the singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 16(3):793–810, 1995. 56

    Google Scholar 

  62. S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA Journal of Numerical Analysis, 2(3):303–323, 1982. 38

    Google Scholar 

  63. P.C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia, PA, 1998. 104

    Google Scholar 

  64. P.C. Hansen, J.G. Nagy, and D.P. O’Leary. Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia, PA, 2006. 38

    Google Scholar 

  65. R.J. Hanson and C.L. Lawson. Extensions and applications of the Householder algorithm for solving linear least squares problems. Mathematics of Computation, 23(108):787–812, 1969. 56

    Google Scholar 

  66. F.Hespeler. Solution algorithm to a class of monetary rational equilibrium macromodels with optimal monetary policy design. Comput. Econ., 31:207–223, 2008. 108

    Google Scholar 

  67. D.J. Higham and N.J. Higham. Structured backward error and condition of generalized eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 20(2):493–512, 1998. 106

    Google Scholar 

  68. N.J. Higham. A survey of condition number estimation for triangular matrices. SIAM Review, 29:575–596, 1987. 35, 57

    Google Scholar 

  69. N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 2002. 36

    Google Scholar 

  70. N.J. Higham and P.A. Knight. Matrix powers in finite precision arithmetic. SIAM Journal on Matrix Analysis and Applications, 16(2):343–358, 1995. 89

    Google Scholar 

  71. N.J. Higham, D.S. Mackey, and F.Tisseur. The conditioning of linearizations of matrix polynomials. SIAM Journal on Matrix Analysis and Applications, 28:1005–1028, 2006. 108

    Google Scholar 

  72. N.J. Higham, D.S. Mackey, and F.Tisseur. Definite matrix polynomials and their linearization by definite pencils. SIAM Journal on Matrix Analysis and Applications, 31:478–502, 2009. 109

    Google Scholar 

  73. A.S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell, New York, 1965. 30

    Google Scholar 

  74. D.A. Huckaby and T.F. Chan. Stewart’s pivoted QLP decomposition for low-rank matrices. Numerical Linear Algebra with Applications, 12:153–159, 2004. 104

    Google Scholar 

  75. A.Jennings. A direct method for computing latent roots and vectors of a symmetric matrix. Proceedings of the Cambridge Philosphical Society, 63:755–765, 1967. 97

    Google Scholar 

  76. Z.Jia. Private communication, Aug. 22, 2009. 103

    Google Scholar 

  77. B.Kågström and D.Kressner. Multishift variants of the QZ algorithm with aggressive early deflation. SIAM Journal on Matrix Analysis and Applications, 29(1):199–227, 2006. 107

    Google Scholar 

  78. W.Kahan. Numerical linear algebra. Canadian Math. Bulletin, 9:757–801, 1966. 103

    Google Scholar 

  79. W.Kahan. Spectra of nearly Hermitian matrices. Proceedings of the American Mathematical Society, 48(1):11–17, 1975. 80

    Google Scholar 

  80. T.Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1995. 72

    Google Scholar 

  81. L.Kaufman. The LZ-algorithm to solve the generalized eigenvalue problem. SIAM Journal on Numerical Analysis, pages 997–1024, 1974. 107

    Google Scholar 

  82. L.Kaufman. Some thoughts on the QZ algorithm for solving the generalized eigenvalue problem. ACM Transactions on Mathematical Software, 20(2):493–512, 1998. 107

    Google Scholar 

  83. C.Kenney and A.J. Laub. Condition estimates for matrix functions. SIAM Journal on Matrix Analysis and Applications, 10:191–209, 1989. 35

    Google Scholar 

  84. D.Kressner. Perturbation bounds for isotropic invariant subspaces of skew-Hamiltonian matrices. SIAM Journal on Matrix Analysis and Applications, 26(4):947–961, 2005. 92

    Google Scholar 

  85. A.J. Laub and J.Xia. Fast condition estimation for a class of structured eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 30(4):1658–1676, 2009. 38

    Google Scholar 

  86. C.-R. Lee. Private communication, Aug., 2009. 122

    Google Scholar 

  87. R.B. Lehoucq and D.C. Sorensen. Deflation techniques for an implicity restarted Arnoldi iteration. SIAM Journal on Matrix Analysis and Applications, 17:789–821, 1996. 113

    Google Scholar 

  88. R.-C. Li. A converse to the Bauer-Fike type theorem. Linear Algebra and Its Applications, 109:167–178, 1988. 106

    Google Scholar 

  89. R.-C. Li. On perturbation theorems for the generalized eigenvalues of regular matrix pencils. Math. Numer. Sinica, 11:10–19, 1989. In Chinese. Engl. trans. in Chinese Journal of Numerical Mathematics and Applications 11 (1989) 24-35. 106

    Google Scholar 

  90. R.-C. Li. Bounds on perturbations of generalized singular values and of associated subspaces. SIAM Journal on Matrix Analysis and Applications, 14:195–234, 1993. 109

    Google Scholar 

  91. R.-C. Li. On perturbations of matrix pencils with real spectra. Mathematics of Computation, 62:231–265, 1994. 106, 109

    Google Scholar 

  92. R.-C. Li. On perturbations of matrix pencils with real spectra, a revisit. Mathematics of Computation, 72:715–728, 2003. 109

    Google Scholar 

  93. K.J.R. Liu. Private communication, Sep. 11, 2009. 60

    Google Scholar 

  94. F.T. Luk and S.Qiao. A new matrix decomposition for signal processing. Automatica (IFAC), 30:39–43, January 1994. 59

    Google Scholar 

  95. H.M. Markowitz. The elimination form of the inverse and its application to linear programming. Management Science, 3(3):255–269, 1957. 48

    Google Scholar 

  96. R.Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 19(2):541–550, 1998. 93

    Google Scholar 

  97. C.D. Meyer. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Review, 31(2):240–272, 1989. 82

    Google Scholar 

  98. C.D. Meyer. Uncoupling the Perron eigenvector problem. Linear Algebra and Its Applications, 114/115:69–94, 1989. 82

    Google Scholar 

  99. L.Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J. Math., 11:50–59, 1960. 109

    Google Scholar 

  100. K.C. Ng and B.N. Parlett. Development of an accurate algorithm for EXP(Bt), Part I, programs to swap diagonal block, Part II. CPAM Technical Report 294, University of California, Berkeley, CA, 1988. 100

    Google Scholar 

  101. D.P. O’Leary. On bounds for scaled projections and pseudoinverses. Linear Algebra and Its Applications, 132:115–117, 1990. 69

    Google Scholar 

  102. J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia, PA, 2000. Vol. 30 of Classics in Applied Mathematics; Reprint of 1978 Academic Press book. 51

    Google Scholar 

  103. A.M. Ostrowski. Solution of equations in Euclidean and Banach spaces. Academic Press, New York-London, 1973. Third edition of Solution of Equations and Systems of Equations. 89

    Google Scholar 

  104. C.C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matrices. PhD thesis, University of London, 1971. 103

    Google Scholar 

  105. C.C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. Journal of the Institute of Mathematics and Its Applications, 18:341–349, 1976. 103

    Google Scholar 

  106. C.C. Paige. A note on a result of Sun Ji-guang: sensitivity of the CS and GSV decompositions. SIAM Journal on Numerical Analysis, 21:186–191, 1984. 109

    Google Scholar 

  107. C.C. Paige. Private communication, Aug. 14, 2009. 107

    Google Scholar 

  108. C.C. Paige and M.A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1):43–71, 1982. 31

    Google Scholar 

  109. C.C. Paige and M.Wei. History and generality of the CS decomposition. Linear Algebra and Its Applications, 208(209):303–326, 1994. 66, 70

    Google Scholar 

  110. C.C. Paige and M.A. Saunders. Towards a generalized singular value decomposition. SIAM Journal on Numerical Analysis, 18:398–405, 1981. 70, 109

    Google Scholar 

  111. C.-T. Pan. A modification to the LINPACK downdating algorithm. BIT, 30:707–722, 1990. 54

    Google Scholar 

  112. H.Park and L.Eldén. Downdating the rank-revealing URV decomposition. SIAM Journal on Matrix Analysis and Applications, 16(1):138–155, 1995. 59

    Google Scholar 

  113. B.Parlett and D.Scott. The Lanczos algorithm with selective orthogonalization. Mathematics of Computation, 33:217–238, 1979. 103

    Google Scholar 

  114. B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, 1980. 80, 103, 112

    Google Scholar 

  115. B.N. Parlett. Private communication, Aug. 24, 2009. 107

    Google Scholar 

  116. B.N. Parlett. Private communication, Jun. 9, 2009. 122

    Google Scholar 

  117. B.N. Parlett and J.Le. Forward instability of tridiagonal QR. SIAM Journal on Matrix Analysis and Applications, 14:279–316, 1993. 113

    Google Scholar 

  118. A.Ruhe. Perturbation bounds for means of eigenvalues and invariant subspaces. BIT, 10:343–354, 1970. 72, 100

    Google Scholar 

  119. H.Rutishauser. Computational aspects of F. L. Bauer’s simultaneous iteration method. Numerische Mathematik, 13(1):4–13, March 1969. (submitted January 16, 1969). 97, 103

    Google Scholar 

  120. Y.Saad. Numerical solution of large Lyapunov equations. In Signal Processing, Scattering and Operator Theory, and Numerical Methods, Proc. Int. Symp. MTNS-89, volume III, pages 503–511. Birkhauser, Boston, 1990. 38

    Google Scholar 

  121. Y.Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, New York, 1992. 87, 112

    Google Scholar 

  122. Y.Saad. Private communication, 2009. 98, 122

    Google Scholar 

  123. M.A. Saunders. Large-scale linear programming using the Cholesky factorization. Technical Report STAN-CS-72-252, Computer Science Dept, Stanford University, 1972. 60 pp. 52, 54

    Google Scholar 

  124. M.A. Saunders. Private communication, 2009. 31, 52, 54

    Google Scholar 

  125. R.Schreiber and C.Van Loan. A storage-efficient WY representation for products of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10:53–57, 1989. 44

    Google Scholar 

  126. H.R. Schwarz. Numerik symmetrischer Matrizen. Teubner, Stuttgart, 1968. 97

    Google Scholar 

  127. H.Simon and A.Ando. Aggregation of variables in dynamic-systems. Econometrica, 29(2):111–138, 1961. 82

    Google Scholar 

  128. H.D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods. Linear Algebra and Its Applications, 61:101–131, 1984. 117

    Google Scholar 

  129. H.D. Simon. The Lanczos algorithm with partial reorthogonalization. Mathematics of Computation, 42:115–142, 1984. 118

    Google Scholar 

  130. D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications, 13:357–385, 1992. 112, 113

    Google Scholar 

  131. J.-G. Sun. A note on Stewart’s theorem for definite matrix pairs. Linear Algebra and Its Applications, 48:331–339, 1982. 109

    Google Scholar 

  132. J.-G. Sun. The perturbation bounds of generalized eigenvalues of a class of matrix-pairs. Math. Numer. Sinica, 4:23–29, 1982. In Chinese. 106

    Google Scholar 

  133. J.-G. Sun. Perturbation analysis for the generalized singular value decomposition. SIAM Journal on Numerical Analysis, 20:611–625, 1983. 109

    Google Scholar 

  134. J.-G. Sun. Perturbation bounds for eigenspaces of a definite matrix pair. Numerische Mathematik, 41:321–343, 1983. 109

    Google Scholar 

  135. J.-G. Sun. Gerschgorin type theorem and the perturbation of the eigenvalues of a singular pencil. Math. Numer. Sinica, 7:253–264, 1985. In Chinese. Engl. trans. in Chinese Journal of Numerical Mathematics and Applications 10 (1988) 1-13. 108

    Google Scholar 

  136. J.-G. Sun. On condition numbers of a nondefective multiple eigenvalue. Numerische Mathematik, 61(2):265–275, 1992. 93

    Google Scholar 

  137. J.-G. Sun. Backward perturbation analysis of certian characteristic subspaces. Numerische Mathematik, 65:357–382, 1993. 109

    Google Scholar 

  138. J.-G. Sun. On worst-case condition numbers of a nondefective multiple eigenvalue. Numerische Mathematik, 69(3):373–382, 1995. 93

    Google Scholar 

  139. V.L. Syrmos. Disturbance decoupling using constrained Sylvester equations. IEEE Trans. on Automatic Control, 39:797–803, 1994. 38

    Google Scholar 

  140. L.N. Trefethen and M.Embree. Spectra and pseudospectra. Princeton University Press, Princeton, NJ, 2005. The behavior of nonnormal matrices and operators. 92

    Google Scholar 

  141. S.Van Criekingen. A linear algebraic analysis of diffusion synthetic acceleration for three-dimensional transport equations. SIAM Journal on Numerical Analysis, 43:2034–2059, 2005. 70

    Google Scholar 

  142. C.Van Loan and J.Speiser. Computation of the C-S decomposition, with application to signal processing. In SPIE Conference on Advanced Algorithms and Architectures for Signal Processing, 19-20 Aug. 1986, pages 71–78. San Diego, CA; (USA), 1987. 70

    Google Scholar 

  143. C.F. Van Loan. A general matrix eigenvalue algorithm. SIAM Journal on Numerical Analysis, 12:819–834, 1975. 107

    Google Scholar 

  144. C.F. Van Loan. Generalizing the singular value decomposition. SIAM Journal on Numerical Analysis, 13:76–83, 1976. 70, 109

    Google Scholar 

  145. C.F. Van Loan. Computing the CS and the generalized singular value decompositions. Numerische Mathematik, 46(4):479–491, 1985. 70

    Google Scholar 

  146. C.F. Van Loan. On estimating the condition of eigenvalues and eigenvectors. Linear Algebra and Its Applications, 88-89:715–732, 1987. 35

    Google Scholar 

  147. C.F. Van Loan. The ubiquitous Kronecker product. J. Computational and Applied Mathematics, 123:85–100, 2000. 38

    Google Scholar 

  148. J.M. Varah. The Computation of Bounds for the Invariant Subspaces of a General Matrix Operator. PhD thesis, Stanford University, Department of Computer Science, Stanford, CA, 1967. 104

    Google Scholar 

  149. J.M. Varah. Invariant subspace perturbations for a non-normal matrix. In Information processing 71 (Proc. IFIP Congress, Ljubljana, 1971), Vol. 2: Applications, pages 1251–1253. North-Holland, Amsterdam, 1972. 72

    Google Scholar 

  150. J.M. Varah. On the separation of two matrices. SIAM Journal on Numerical Analysis, 16(2):216–222, 1979. 76, 92

    Google Scholar 

  151. J.J. Vartiainen. Unitary Transformations for Quantum Computing. PhD thesis, Helsinki University of Technology, Department of Engineering Physics and Mathematics, 2005. 70

    Google Scholar 

  152. Z.Z. Wang and F.H. Qi. Analysis of multiframe super-resolution reconstruction for image anti-aliasing and aeblurring. Image and Vision Computing, 24:393–404, 2005. 70

    Google Scholar 

  153. R.C. Ward. The combination shift QZ algorithm. SIAM Journal on Numerical Analysis, 12:835–853, 1975. 107

    Google Scholar 

  154. P-Ä. Wedin. On pseudo-inverses of perturbed matrices. Technical report, Technical Report, Department of Computer Science, Lund University, Sweden, 1969. 70

    Google Scholar 

  155. P-Ä. Wedin. Perturbation theorey for pseudo-inverses. BIT, 13:217–232, 1973. 66, 70

    Google Scholar 

  156. J.H. Wilkinson. Rounding Errors in Algebraic Processes. York House, London, 1963. reprinted by Dover, 1994. 39

    Google Scholar 

  157. J.H. Wilkinson. Modern error analysis. SIAM Review, 13(4):548–568, 1971. 83

    Google Scholar 

  158. J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, USA, London, 1988. 33, 39, 62, 108

    Google Scholar 

  159. P.Wolfe. The secant method for simultaneous nonlinear equations. Communications of the ACM, 2(12):12–13, 1959. 51

    Google Scholar 

  160. Z.Zlatev, J.Wasniewski, and K.Schaumburg. Condition number estimators in a sparse matrix software. SIAM Journal on Scientific and Statistical Computing, 7(4):1175–1189, 1986. 35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha E. Kilmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kilmer, M.E., O’Leary, D.P. (2010). Other Contributions. In: Kilmer, M.E., O’Leary, D.P. (eds) G.W. Stewart. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4968-5_11

Download citation

Publish with us

Policies and ethics