Advertisement

Algorithms for ℓ1-Minimization

  • Simon Foucart
  • Holger Rauhut
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter presents a selection of three algorithms designed specifically to compute solutions of 1-minimization problems. The algorithms, chosen with simplicity of analysis and diversity of techniques in mind, are the homotopy method, Chambolle and Pock’s primal–dual algorithm, and the iteratively reweighted least squares algorithm. Other algorithms are also mentioned but discussed in less detail.

Keywords

1-minimization homotopy method LARS algorithm Chambolle and Pock’s algorithm iteratively reweighted least square algorithm 

References

  1. 4.
    M. Afonso, J. Bioucas Dias, M. Figueiredo, Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)MathSciNetCrossRefGoogle Scholar
  2. 20.
    K. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-linear Programming (Stanford University Press, Stanford, California, 1958)MATHGoogle Scholar
  3. 32.
    S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012)MathSciNetMATHCrossRefGoogle Scholar
  4. 34.
    H. Bauschke, P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011)Google Scholar
  5. 36.
    A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 37.
    A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)MathSciNetCrossRefGoogle Scholar
  7. 38.
    S. Becker, J. Bobin, E.J. Candès, NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 44.
    D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Athena Scientific, Cambridge, MA, 1997)Google Scholar
  9. 49.
    E. Birgin, J. Martínez, M. Raydan, Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23(4), 539–559 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 70.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)MATHCrossRefGoogle Scholar
  11. 71.
    K. Bredies, D. Lorenz, Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 79.
    M. Burger, M. Moeller, M. Benning, S. Osher, An adaptive inverse scale space method for compressed sensing. Math. Comp. 82(281), 269–299 (2013)MathSciNetMATHCrossRefGoogle Scholar
  13. 107.
    A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40, 120–145 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 109.
    R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)CrossRefGoogle Scholar
  15. 110.
    R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24(3), 1–14 (2008)MathSciNetCrossRefGoogle Scholar
  16. 111.
    R. Chartrand, W. Yin, Iteratively reweighted algorithms for compressive sensing. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Las Vegas, Nevada, USA, pp. 3869–3872, 2008Google Scholar
  17. 112.
    G. Chen, R. Rockafellar, Convergence rates in forward-backward splitting. SIAM J. Optim. 7(2), 421–444 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 121.
    A. Cline, Rate of convergence of Lawson’s algorithm. Math. Commun. 26, 167–176 (1972)MathSciNetMATHGoogle Scholar
  19. 127.
    P. Combettes, J.-C. Pesquet, A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)CrossRefGoogle Scholar
  20. 128.
    P. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, ed. by H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz (Springer, New York, 2011), pp. 185–212Google Scholar
  21. 129.
    P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting. Multiscale Model. Sim. 4(4), 1168–1200 (electronic) (2005)Google Scholar
  22. 138.
    I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetMATHCrossRefGoogle Scholar
  23. 139.
    I. Daubechies, R. DeVore, M. Fornasier, C. Güntürk, Iteratively re-weighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 140.
    I. Daubechies, M. Fornasier, I. Loris, Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14(5–6), 764–792 (2008)MathSciNetMATHCrossRefGoogle Scholar
  25. 169.
    D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theor. 54(11), 4789–4812 (2008)MathSciNetMATHCrossRefGoogle Scholar
  26. 172.
    J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetMATHCrossRefGoogle Scholar
  27. 177.
    B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression. Ann. Stat. 32(2), 407–499 (2004)MathSciNetMATHCrossRefGoogle Scholar
  28. 186.
    H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Springer, New York, 1996)MATHCrossRefGoogle Scholar
  29. 188.
    E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split Bregman. Preprint (2009)Google Scholar
  30. 196.
    M.A. Figueiredo, R.D. Nowak, An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)MathSciNetCrossRefGoogle Scholar
  31. 197.
    M.A. Figueiredo, R.D. Nowak, S. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Proces. 1(4), 586–598 (2007)CrossRefGoogle Scholar
  32. 201.
    M. Fornasier, Numerical methods for sparse recovery. In Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier. Radon Series on Computational and Applied Mathematics, vol. 9 (de Gruyter, Berlin, 2010), pp. 93–200Google Scholar
  33. 202.
    M. Fornasier, H. Rauhut, Iterative thresholding algorithms. Appl. Comput. Harmon. Anal. 25(2), 187–208 (2008)MathSciNetMATHCrossRefGoogle Scholar
  34. 203.
    M. Fornasier, H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46(2), 577–613 (2008)MathSciNetMATHCrossRefGoogle Scholar
  35. 205.
    M. Fornasier, H. Rauhut, R. Ward, Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J. Optim. 21(4), 1614–1640 (2011)MathSciNetMATHCrossRefGoogle Scholar
  36. 216.
    D. Gabay, Applications of the method of multipliers to variational inequalities. In Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, ed. by M. Fortin, R. Glowinski (North-Holland, Amsterdam, 1983), pp. 299–331CrossRefGoogle Scholar
  37. 217.
    D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl. 2, 17–40 (1976)MATHCrossRefGoogle Scholar
  38. 226.
    R. Glowinski, T. Le, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics (SIAM, Philadelphia, 1989)MATHCrossRefGoogle Scholar
  39. 229.
    D. Goldfarb, S. Ma, Convergence of fixed point continuation algorithms for matrix rank minimization. Found. Comput. Math. 11(2), 183–210 (2011)MathSciNetMATHCrossRefGoogle Scholar
  40. 230.
    T. Goldstein, S. Osher, The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)MathSciNetMATHCrossRefGoogle Scholar
  41. 256.
    E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)MathSciNetMATHCrossRefGoogle Scholar
  42. 257.
    E. Hale, W. Yin, Y. Zhang, Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010)MathSciNetMATHGoogle Scholar
  43. 264.
    B. He, X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)MathSciNetMATHCrossRefGoogle Scholar
  44. 302.
    S. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, A method for large-scale l1-regularized least squares problems with applications in signal processing and statistics. IEEE J. Sel. Top. Signal Proces. 4(1), 606–617 (2007)CrossRefGoogle Scholar
  45. 303.
    J. King, A minimal error conjugate gradient method for ill-posed problems. J. Optim. Theor. Appl. 60(2), 297–304 (1989)MATHCrossRefGoogle Scholar
  46. 318.
    C. Lawson, Contributions to the Theory of Linear Least Maximum Approximation. PhD thesis, University of California, Los Angeles, 1961Google Scholar
  47. 323.
    J. Lee, Y. Sun, M. Saunders, Proximal Newton-type methods for convex optimization. Preprint (2012)Google Scholar
  48. 324.
    B. Lemaire, The proximal algorithm. In New Methods in Optimization and Their Industrial Uses (Pau/Paris, 1987), Internationale Schriftenreihe Numerischen Mathematik, vol. 87 (Birkhäuser, Basel, 1989), pp. 73–87Google Scholar
  49. 328.
    P.-L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetMATHCrossRefGoogle Scholar
  50. 334.
    D. Lorenz, M. Pfetsch, A. Tillmann, Solving Basis Pursuit: Heuristic optimality check and solver comparison. Preprint (2011)Google Scholar
  51. 335.
    I. Loris, L1Packv2: a Mathematica package in minimizing an 1-penalized functional. Comput. Phys. Comm. 179(12), 895–902 (2008)MathSciNetMATHCrossRefGoogle Scholar
  52. 345.
    B. Martinet, Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4(Ser. R-3), 154–158 (1970)Google Scholar
  53. 365.
    A. Nemirovsky, D. Yudin, Problem Complexity and Method Efficiency in Optimization. A Wiley-Interscience Publication. (Wiley, New York, 1983)Google Scholar
  54. 366.
    Y. Nesterov, A method for solving the convex programming problem with convergence rate O(1 ∕ k 2). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)MathSciNetGoogle Scholar
  55. 367.
    Y. Nesterov, Smooth minimization of non-smooth functions. Math. Program. 103(1, Ser. A), 127–152 (2005)Google Scholar
  56. 369.
    J. Nocedal, S. Wright, Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006)Google Scholar
  57. 375.
    M. Osborne, Finite Algorithms in Optimization and Data Analysis (Wiley, New York, 1985)MATHGoogle Scholar
  58. 376.
    M. Osborne, B. Presnell, B. Turlach, A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000)MathSciNetMATHCrossRefGoogle Scholar
  59. 377.
    M. Osborne, B. Presnell, B. Turlach, On the LASSO and its dual. J. Comput. Graph. Stat. 9(2), 319–337 (2000)MathSciNetGoogle Scholar
  60. 395.
    T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In IEEE International Conference Computer Vision (ICCV) 2011, pp. 1762 –1769, November 2011Google Scholar
  61. 396.
    T. Pock, D. Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford-Shah functional. In ICCV Proceedings (Springer, Berlin, 2009)Google Scholar
  62. 405.
    H. Raguet, J. Fadili, G. Peyré, A generalized forward-backward splitting. Preprint (2011)Google Scholar
  63. 423.
    R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Contr. Optim. 14(5), 877–898 (1976)MathSciNetMATHCrossRefGoogle Scholar
  64. 446.
    S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)MathSciNetMATHCrossRefGoogle Scholar
  65. 451.
    J.-L. Starck, F. Murtagh, J. Fadili, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  66. 493.
    E. van den Berg, M. Friedlander, Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)MathSciNetMATHCrossRefGoogle Scholar
  67. 511.
    S. Worm, Iteratively re-weighted least squares for compressed sensing. Diploma thesis, University of Bonn, 2011Google Scholar
  68. 516.
    X. Zhang, M. Burger, X. Bresson, S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imag. Sci. 3(3), 253–276 (2010)MathSciNetMATHCrossRefGoogle Scholar
  69. 517.
    X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011)MathSciNetMATHCrossRefGoogle Scholar
  70. 518.
    M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report, CAM Report 08–34, UCLA, Los Angeles, CA, 2008Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Simon Foucart
    • 1
  • Holger Rauhut
    • 2
  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA
  2. 2.Lehrstuhl C für Mathematik (Analysis)RWTH Aachen UniversityAachenGermany

Personalised recommendations