Skip to main content

Instance Optimality and Quotient Property

  • Chapter
  • First Online:
A Mathematical Introduction to Compressive Sensing

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 14k Accesses

Abstract

This chapter introduces the notion of instance optimality. While uniform 1-instance optimality is a practical concept in compressive sensing, uniform 2-instance optimality is shown not to be. A new property, called quotient property, is then developed to analyze measurement–reconstruction schemes. This property of the measurement matrix, coupled with equality-constrained 1-minimization, guarantees robustness of the scheme under measurement errors as well as nonuniform 2-instance optimality. The quotient property is proved to hold with high probability for Gaussian matrices and, modulo a slight modification, for subgaussian matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Cohen, W. Dahmen, R.A. DeVore, Compressed sensing and best k-term approximation. J. Amer. Math. Soc. 22(1), 211–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.A. DeVore, G. Petrova, P. Wojtaszczyk, Instance-optimality in probability with an 1-minimization decoder. Appl. Comput. Harmon. Anal. 27(3), 275–288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Foucart, Stability and robustness of 1-minimizations with Weibull matrices and redundant dictionaries. Lin. Algebra Appl. to appear

    Google Scholar 

  4. S. Foucart, A. Pajor, H. Rauhut, T. Ullrich, The Gelfand widths of p -balls for \(0 < p \leq 1\). J. Complex. 26(6), 629–640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Mat. Sb. (N.S.) 136(178)(1), 85–96 (1988)

    Google Scholar 

  6. A. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Montgomery-Smith, The distribution of Rademacher sums. Proc. Am. Math. Soc. 109(2), 517–522 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Wojtaszczyk, Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math. 10, 1–13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Wojtaszczyk, 1 minimisation with noisy data. SIAM J. Numer. Anal. 50(2), 458–467 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foucart, S., Rauhut, H. (2013). Instance Optimality and Quotient Property. In: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4948-7_11

Download citation

Publish with us

Policies and ethics