Instance Optimality and Quotient Property

  • Simon Foucart
  • Holger Rauhut
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter introduces the notion of instance optimality. While uniform 1-instance optimality is a practical concept in compressive sensing, uniform 2-instance optimality is shown not to be. A new property, called quotient property, is then developed to analyze measurement–reconstruction schemes. This property of the measurement matrix, coupled with equality-constrained 1-minimization, guarantees robustness of the scheme under measurement errors as well as nonuniform 2-instance optimality. The quotient property is proved to hold with high probability for Gaussian matrices and, modulo a slight modification, for subgaussian matrices.

Keywords

uniform instance optimality gaussian matrices subgaussian matrices stability robustness 1-minimization quotient property nonuniform instance optimality 

References

  1. 123.
    A. Cohen, W. Dahmen, R.A. DeVore, Compressed sensing and best k-term approximation. J. Amer. Math. Soc. 22(1), 211–231 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 148.
    R.A. DeVore, G. Petrova, P. Wojtaszczyk, Instance-optimality in probability with an 1-minimization decoder. Appl. Comput. Harmon. Anal. 27(3), 275–288 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 210.
    S. Foucart, Stability and robustness of 1-minimizations with Weibull matrices and redundant dictionaries. Lin. Algebra Appl. to appearGoogle Scholar
  4. 213.
    S. Foucart, A. Pajor, H. Rauhut, T. Ullrich, The Gelfand widths of p-balls for \(0 < p \leq 1\). J. Complex. 26(6), 629–640 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 228.
    E. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Mat. Sb. (N.S.) 136(178)(1), 85–96 (1988)Google Scholar
  6. 329.
    A. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 356.
    S. Montgomery-Smith, The distribution of Rademacher sums. Proc. Am. Math. Soc. 109(2), 517–522 (1990)MathSciNetMATHCrossRefGoogle Scholar
  8. 509.
    P. Wojtaszczyk, Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math. 10, 1–13 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 510.
    P. Wojtaszczyk, 1 minimisation with noisy data. SIAM J. Numer. Anal. 50(2), 458–467 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Simon Foucart
    • 1
  • Holger Rauhut
    • 2
  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA
  2. 2.Lehrstuhl C für Mathematik (Analysis)RWTH Aachen UniversityAachenGermany

Personalised recommendations