Skip to main content

Modelling opinion formation by means of kinetic equations

  • Chapter
  • First Online:

Summary

In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.New opinions are always suspected, and usually opposed, without any other reason but because they are not already common.John Locke, An Essay Concerning Human Understanding

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aletti, G. Naldi, and G. Toscani. First-order continuous models of opinion formation. SIAM J. Appl. Math., 67(3):837–853 (electronic), 2007.

    Google Scholar 

  2. L. Arlotti, N. Bellomo, and E. De Angelis. Generalized kinetic (Boltzmann) models: mathematical structures and applications. Math. Models Methods Appl. Sci., 12(4):567–591, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Ben-Naim. Opinion dynamics: rise and fall of political parties. Europhys. Lett., 69:671–677, 2005.

    Article  Google Scholar 

  4. E. Ben-Naim, P. L. Krapivsky, and S. Redner. Bifurcation and patterns in compromise processes. Phys. D, 183(3–4):190–204, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Ben-Naim, P. L. Krapivsky, F. Vazquez, and S. Redner. Unity and discord in opinion dynamics. Phys. A, 330(1–2):99–106, 2003. Randomness and complexity (Eilat, 2003).

    Google Scholar 

  6. M.-L. Bertotti and M. Delitala. On the qualitative analysis of the solutions of a mathematical model of social dynamics. Appl. Math. Lett., 19(10):1107–1112, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.-L. Bertotti and M. Delitala. Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Anal. Real World Appl., 9(1):183–196, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.-L. Bertotti and M. Delitala. On a discrete generalized kinetic approach for modelling persuader’s influence in opinion formation processes. Math. Comput. Modelling, 48(7–8):1107–1121, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  9. M.-L. Bertotti and M. Delitala. On the existence of limit cycles in opinion formation processes under time periodic influence of persuaders. Math. Models Methods Appl. Sci., 18(6):913–934, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. A. Bird. Molecular gas dynamics and the direct simulation of gas flows, volume 42 of Oxford Engineering Science Series. The Clarendon Press Oxford University Press, New York, 1995. Corrected reprint of the 1994 original.

    Google Scholar 

  11. L. Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte Akad. Wiss., 66:275–370, 1873.

    Google Scholar 

  12. L. Boltzmann. Lectures on gas theory. Translated by Stephen G. Brush. University of California Press, Berkeley, 1964.

    Google Scholar 

  13. L. Boudin, A. Mercier, and F. Salvarani. Conciliatory and contradictory dynamics in opinion formation. Technical report, Lab. J.-L. Lions, UPMC, 2009.

    Google Scholar 

  14. L. Boudin, R. Monaco, and F. Salvarani. A kinetic model for multidimensional opinion formation. Phys. Rev. E, 81, 036109, 2010.

    Article  Google Scholar 

  15. L. Boudin and F. Salvarani. A kinetic approach to the study of opinion formation. M2AN Math. Model. Numer. Anal., 43(3):507–522, 2009.

    Google Scholar 

  16. L. Boudin and F. Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinet. Relat. Models, 2(3):433–449, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Buet, S. Cordier, and P. Degond. Regularized Boltzmann operators. Comput. Math. Appl., 35(1–2):55–74, 1998. Simulation methods in kinetic theory.

    Google Scholar 

  18. M. Campiti, G. Metafune, and D. Pallara. Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum, 57(1):1–36, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. M. Case and P. F. Zweifel. Linear transport theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967.

    Google Scholar 

  20. C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81:591–646, 2009.

    Article  Google Scholar 

  21. C. Cercignani. The Boltzmann equation and its applications, volume 67 of Applied Mathematical Sciences. Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  22. C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume 106 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  23. S. Chandrasekhar. Radiative transfer. Dover Publications Inc., New York, 1960.

    Google Scholar 

  24. W. Cholewa. Aggregation of fuzzy opinions—an axiomatic approach. Fuzzy Sets Syst., 17(3):249–258, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  25. V. Comincioli, L. Della Croce, and G. Toscani. A Boltzmann-like equation for choice formation. Kinet. Relat. Models, 2(1):135–149, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Adv. Complex Syst., 3:87–98, 2000.

    Article  Google Scholar 

  27. P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity. Math. Comp., 53(188):485–507, 1989.

    Google Scholar 

  28. P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. II. The anisotropic case. Math. Comp., 53(188):509–525, 1989.

    Google Scholar 

  29. P. Degond, L. Pareschi, and G. Russo, editors. Modeling and computational methods for kinetic equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc., Boston, MA, 2004.

    Google Scholar 

  30. L. Desvillettes and F. Salvarani. Characterization of collision kernels. M2AN Math. Model. Numer. Anal., 37(2):345–355, 2003.

    Google Scholar 

  31. B. Düring, P. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. A, 465(2112):2687–3708, 2009.

    Article  Google Scholar 

  32. M. Fansten. Introduction à une théorie mathématique de l’opinion. Ann. I.N.S.E.E., 21:3–55, 1976.

    Google Scholar 

  33. S. French. Updating of belief in the light of someone else’s opinion. J. Royal Statist. Soc. Ser. A, 143(1):43–48, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Galam. Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”. Phys. A, 333(1–4):453–460, 2004.

    Article  MathSciNet  Google Scholar 

  35. S. Galam. Stability of leadership in bottom-up hierarchical organizations. J. Soc. Complex., 2(2):62–75, 2006.

    Google Scholar 

  36. S. Galam. From 2000 Bush-Gore to 2006 Italian elections: voting at fifty-fifty and the contrarian effect. Qual. Quant., 41(4):579–589, 2007.

    Article  Google Scholar 

  37. S. Galam. Sociophysics: a review of Galam models. Int. J. Mod. Phys. C, 19(4):409–440, 2008.

    Article  MATH  Google Scholar 

  38. S. Galam, Y. Gefen, and Y. Shapir. Sociophysics: a new approach of sociological collective behaviour. i. Mean-behaviour description of a strike. J. Math. Sociol., 9:1–23, 1982.

    Google Scholar 

  39. S. Galam and S. Moscovici. Towards a theory of collective phenomena: consensus and attitude changes in groups. Eur. J. Soc. Psychol., 21:49–74, 1991.

    Article  Google Scholar 

  40. S. Galam and J.-D. Zucker. From individual choice to group decision-making. Phys. A, 287(3–4):644–659, 2000. Economic dynamics from the physics point of view (Bad Honnef, 2000).

    Google Scholar 

  41. G. Gallavotti. Rigorous theory of the boltzmann equation in the lorentz gas. Technical report, Nota interna n. 358, Istituto di Fisica, Università di Roma, 1973.

    Google Scholar 

  42. R. Gatignol. Théorie cinétique des gaz à répartition discrète de vitesses. Springer Verlag, Berlin, 1975.

    Google Scholar 

  43. S. Gekle, L. Peliti, and S. Galam. Opinion dynamics in a three-choice system. Eur. Phys. J. B, 45:569–575, 2005.

    Article  Google Scholar 

  44. C. Genest, S. Weerahandi, and J. V. Zidek. Aggregating opinions through logarithmic pooling. Theory Decision, 17(1):61–70, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  45. D.B. Goldstein. Discrete-velocity collision dynamics for polyatomic molecules. Phys. Fluids A, 4(8):1831–1839, 1992.

    Article  Google Scholar 

  46. D. Helbing. Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models. Phys. A, 196:546–573, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  47. D. Helbing. Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory. Phys. A, 193:241–258, 1993.

    Article  MathSciNet  Google Scholar 

  48. D. Helbing. A mathematical model for the behavior of individuals in a social field. J. Math. Sociol., 19(3):189–219, 1994.

    Google Scholar 

  49. A. B. Huseby. Combining opinions in a predictive case. In Bayesian statistics, 3 (Valencia, 1987), Oxford Sci. Publ., pages 641–651. Oxford University Press, New York, 1988.

    Google Scholar 

  50. R. Illner and M. Pulvirenti. Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Comm. Math. Phys., 105(2):189–203, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  51. R. Illner and M. Pulvirenti. Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum. Erratum and improved result. Comm. Math. Phys., 121(1):143–146, 1989.

    Google Scholar 

  52. T. Inamuro and B. Sturtevant. Numerical study of discrete-velocity gases. Phys. Fluids A, 2(12):2196–2203, 1990.

    Article  MATH  Google Scholar 

  53. E. Jäger and L. A. Segel. On the distribution of dominance in populations of social organisms. SIAM J. Appl. Math., 52(5):1442–1468, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  54. G. S. Jowett and V. O’Donnell. Propaganda and persuasion. Sage publications, Beverley Hills, CA (London), fourth edition, 2005.

    Google Scholar 

  55. M. Kac. Probability and related topics in physical sciences, volume 1957 of With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo. Interscience Publishers, London-New York, 1959.

    Google Scholar 

  56. B. K. Kale. On tests of hypotheses regarding the change of opinions. Ann. Soc. Sci. Bruxelles Sér. I, 88:305–312, 1974.

    MATH  MathSciNet  Google Scholar 

  57. S. Kaniel and M. Shinbrot. The Boltzmann equation. II. Some discrete velocity models. J. Mécanique, 19(3):581–593, 1980.

    Google Scholar 

  58. O. E. Lanford III. Time evolution of large classical systems. In Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), pages 1–111. Lecture Notes in Phys., Vol. 38. Springer, Berlin, 1975.

    Google Scholar 

  59. T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion processes, volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  60. M. Lo Schiavo. Population kinetic models for social dynamics: dependence on structural parameters. Comput. Math. Appl., 44(8–9):1129–1146, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  61. M. Lo Schiavo. The modelling of political dynamics by generalized kinetic (Boltzmann) models. Math. Comput. Modelling, 37(3–4):261–281, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  62. M. Lo Schiavo. Kinetic modelling and electoral competition. Math. Comput. Modelling, 42(13):1463–1486, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  63. M. Lo Schiavo. A dynamical model of electoral competition. Math. Comput. Modelling, 43(11–12):1288–1309, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  64. E. Marchi. A game-theoretical approach to some situations in opinion making. Math. Biosci., 2:85–109, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  65. R. Monaco and L. Preziosi. Fluid dynamic applications of the discrete Boltzmann equation, volume 3 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Inc., River Edge, NJ, 1991.

    MATH  Google Scholar 

  66. F. J. Montero de Juan. A note on Fung-Fu’s theorem. Fuzzy Sets Syst., 17(3):259–269, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  67. F. J. Montero de Juan. Aggregation of fuzzy opinions in a nonhomogeneous group. Fuzzy Sets and Systems, 25(1):15–20, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  68. K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Jpn., 49(5):2042–2049, 1980.

    Google Scholar 

  69. K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. II. Multicomponent gas mixtures. J. Phys. Soc. Jpn., 49(5):2050–2054, 1980.

    Google Scholar 

  70. T. Platkowski and R. Illner. Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev., 30(2):213–255, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  71. M. Pulvirenti. Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum. Commun. Math. Phys., 113(1):79–85, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  72. F. Rogier and J. Schneider. A direct method for solving the Boltzmann equation. Trans. Theory Statist. Phys., 23(1–3):313–338, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  73. F. Slanina and H. Lavic̆ka. Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35:279–288, 2003.

    Google Scholar 

  74. E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo. The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys., 149(2):201–220, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  75. V. Sood, T. Antal, and S. Redner. Voter models on heterogeneous networks. Phys. Rev. E, 77(4):041121, 2008.

    Google Scholar 

  76. K. Sznajd-Weron and J. Sznajd. Opinion evolution in closed community. Int. J. Mod. Phys. C, 11:1157–1166, 2000.

    Article  Google Scholar 

  77. G. Toscani. Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481–496, 2006.

    MATH  MathSciNet  Google Scholar 

  78. C. Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, pages 71–305. North-Holland, Amsterdam, 2002.

    Google Scholar 

  79. W. Weidlich. The statistical description of polarization phenomena in society. Br. J. Math. Stat. Psychol., 24:251–266, 1971.

    MATH  Google Scholar 

  80. W. Weidlich and G. Haag, editors. Interregional migration: dynamic theory and comparative analysis. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  81. E. Wild. On Boltzmann’s equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47:602–609, 1951.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Boudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boudin, L., Salvarani, F. (2010). Modelling opinion formation by means of kinetic equations. In: Naldi, G., Pareschi, L., Toscani, G. (eds) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4946-3_10

Download citation

Publish with us

Policies and ethics